Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susumu Shiota is active.

Publication


Featured researches published by Susumu Shiota.


Biochemical Journal | 2000

A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp).

Wei Kong; Susumu Shiota; Yixin Shi; Hiroaki Nakayama; Koji Nakayama

We cloned a gene encoding a 17-kDa protein from a cDNA library of the plant Sedum lineare and found that its deduced amino acid sequence showed similarities to those of Escherichia coli bacterioferritin co-migratory protein (Bcp) and its homologues, which comprise a discrete group associated with the peroxiredoxin (Prx) family. Studies of the recombinant 17-kDa protein produced in E. coli cells revealed that it actually had a thioredoxin-dependent peroxidase activity, the hallmark of the Prx family. PrxQ, as we now designate the 17-kDa protein, had two cysteine residues (Cys-44 and Cys-49) well conserved among proteins of the Bcp group. These two cysteines were demonstrated to be essential for the thioredoxin-dependent peroxidase activity by analysis of mutant proteins, suggesting that these residues are involved in the formation of an intramolecular disulphide bond as an intermediate in the reaction cycle. Expression of PrxQ suppressed the hypersensitivity of an E. coli bcp mutant to peroxides, indicating that it might exert an antioxidant activity in vivo.


The ISME Journal | 2009

The ecological proportion of indigenous bacterial populations in saliva is correlated with oral health status

Toru Takeshita; Yoshio Nakano; Takashi Kumagai; Masaki Yasui; Noriaki Kamio; Yukie Shibata; Susumu Shiota; Yoshihisa Yamashita

To obtain deeper insights into the etiology of oral disease, an understanding of the composition of the surrounding bacterial environments that lead to health or disease is required, which is attracting increasing attention. In this study, the bacterial compositions in the saliva of 200 subjects aged 15–40 years were depicted as peak patterns by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. The subjects were classified into three clusters by partitioning around medoids clustering based on their T-RFLP profiles, and the clinical oral health parameters of the clusters were compared. The clustering of the T-RFLP profiles in this study was mainly based on differences in the abundance distribution of the dominant terminal restriction fragments (TRFs) detected in most of the subjects. Predicted from the sizes of the TRFs, the characteristically more predominant members of each were Prevotella and Veillonella species in cluster I; Streptococcus species in cluster II and Neisseria, Haemophilus or Aggregatibacter species and Porphyromonas species in cluster III. The parameters associated with periodontal disease were significantly different among the clusters. Clusters I and II had a higher percentage of sites of periodontal pockets greater than 4 mm than cluster III, and cluster I contained sites exhibiting bleeding on probing more often than cluster II or III; no significant differences were observed in other parameters. These results suggest that the abundance distribution of commensal bacteria in saliva is correlated with periodontal health, and might be involved in the susceptibility of an individual to periodontal disease.


Journal of Bacteriology | 2010

Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth

Eiji Harada; Ken Ichiro Iida; Susumu Shiota; Hiroaki Nakayama; Shin-ichi Yoshida

Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG(+) gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation.


Journal of Bacteriology | 2008

Concerted Action of Lactate Oxidase and Pyruvate Oxidase in Aerobic Growth of Streptococcus pneumoniae : Role of Lactate as an Energy Source

Hiroaki Taniai; Ken-ichiro Iida; Masanori Seki; Mitsumasa Saito; Susumu Shiota; Hiroaki Nakayama; Shin-ichi Yoshida

Streptococcus pneumoniae was shown to possess lactate oxidase in addition to well-documented pyruvate oxidase. The activities of both H(2)O(2)-forming oxidases in wild-type cultures were detectable even in the early exponential phase of growth and attained the highest levels in the early stationary phase. For each of these oxidases, a defective mutant was constructed and compared to the parent regarding the dynamics of pyruvate and lactate in aerobic cultures. The results obtained indicated that the energy-yielding metabolism in the wild type could be best described by the following scheme. (i) As long as glucose is available, approximately one-fourth of the pyruvate formed is converted to acetate by the sequential action of pyruvate oxidase and acetate kinase with acquisition of additional ATP; (ii) the rest of the pyruvate is reduced by lactate dehydrogenase to form lactate, with partial achievement of redox balance; (iii) the lactate is oxidized by lactate oxidase back to pyruvate, which is converted to acetate as described above; and (iv) the sequential reactions mentioned above continue to occur as long as lactate is present. As predicted by this model, exogenously added lactate was shown to increase the final growth yield in the presence of both oxidases.


Molecular Genetics and Genomics | 1989

Micrococcus luteus homolog of the Escherichia coli uvrA gene: identification of a mutation in the UV-sensitive mutant DB7.

Susumu Shiota; Hiroaki Nakayama

SummaryRestriction fragments ofMicrococcus luteus DNA containing the gene affected by a mutation in the UV-sensitive mutant DB7 were cloned both from the wild type and from the mutant in anEscherichia coli host-vector system. The wild-type fragment was able to reverse the multiple sensitivity of the mutant to UV, mitomycin C, and 4-nitroquinoline 1-oxide by a one-step transformation. Determination of the nucleotide sequences revealed a potential open reading frame coding for a protein of 992 (tentative) amino acid residues, within which the DB7 mutation was identified as a CG-to-TA transition causing a translation termination. The putative product of the open reading frame shares an extensive amino acid sequence homology with theE. coli UvrA protein comprising 940 residues. The homology extends over the greater part of both polypeptides except for two extra sequences of 31 and 24 amino acid residues located at the amino-terminal and in the interior, respectively, of theM. luteus protein. In the homologous region, 56.7% and 16.7% of the 933 pairs of the aligned amino acids were accounted for by conserved residues and conservative substitutions, respectively. These results indicate that the gene defined by the mutation in DB7 represents a homolog of theE. coli uvrA gene. Hence, it has to be concluded that DB7, known for its deficiency in UV endonuclease (pyrimidine dimer DNA glycosylase/apurinic-apyrimidinic endonuclease) activity, is a double mutant which is also defective in an enzyme complex similar to theE. coli UvrABC excinuclease.


Molecular Genetics and Genomics | 1988

Evidence for a Micrococcus luteus gene homologous to uvrB of Escherichia coli

Susumu Shiota; Hiroaki Nakayama

SummaryRestriction fragments of Micrococcus luteus DNA that contained the gene defined by the mutation of an excision repair-deficient mutant, UVsN1, were cloned from both the parental and mutant strains with the Escherichia coli host-vector system. The wild-type fragment was able to reverse the multiple sensitivity of the mutant to ultraviolet, mitomycin C, and 4-nitroquinoline-1-oxide by one-step transformation. Determination of the nucleotide sequences revealed an open reading frame potentially coding for a protein of 709 amino acid residues, within which the mutation was identified as a CG→TA transition causing a change from serine to phenylalanine. The putative product of the open reading frame showed an extensive amino acid sequence homology to the E. coli UvrB protein comprising 673 residues; the homologous region extended over the greater parts of both polypeptides, in which 55% and 17% of the 659 pairs of aligned amino acids were accounted for by conserved residues and conservative substitutions, respectively. This indicates that the gene defined by the UVsN1 mutation represents a homolog of the E. coli uvrB gene, implying the presence in M. luteus of an enzyme complex homologous to the E. coli UvrABC excinuclease.


Journal of Microbiological Methods | 2008

Development and application of a T-RFLP data analysis method using correlation coefficient matrices

Yoshio Nakano; Toru Takeshita; Noriaki Kamio; Susumu Shiota; Yukie Shibata; Masaki Yasui; Yoshihisa Yamashita

Environmental microbiology studies commonly use terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes, for example, to analyze changes in community structure in relation to changing physicochemical and biological conditions over space and time. Although T-RFLP is most useful for comparing samples from different environments, a large number of samples makes effective analysis difficult using the Web-based tools that are currently available. To resolve this dilemma, we used a new approach for calculating data from multiple T-RFLP samples by estimating terminal fragment combinations, then applying a correlation analysis using two different fluorescent dyes generated simultaneously from all samples. This calculation was based on the expectation that the proportions of two terminal fragments from one full-length polymerase chain reaction fragment would be nearly the same in each analysis. Using this program, the oral microflora in 73 human saliva samples were analyzed, and 24 bacterial groups, with peak areas of at least 0.5% and correlation coefficients of 0.55 or greater, were identified from the T-RFs within 40 s.


Archives of Microbiology | 2009

Conjugative plasmid pLD-TEX-KL promotes growth of host bacterium Legionella dumoffii at low temperatures

Tian Qin; Ken-ichiro Iida; Hideki Hirakawa; Susumu Shiota; Hiroaki Nakayama; Shin-ichi Yoshida

Legionella (Fluoribacter) dumoffii is a resident of various aquatic environments and occasionally causes pneumonia in humans. We found that L. dumoffii strain TEX-KL carries a 66-kb circular plasmid. As predicted by the presence of tra genes similar to those of other transferable plasmids, we showed that pLD-TEX-KL was actually capable of transferring itself to a plasmid-cured derivative of the original strain. Unexpectedly, this plasmid-free derivative turned out to be partially defective in terms of growth at temperatures 30°C or lower. Subsequent works revealed that the growth defect was attributable to the loss of the plasmid gene traA(Ti) homologous to the traA gene of Ti plasmid from Agrobacterium tumefaciens, and that the growth was restored by the introduction of the mobA/repB gene of plasmid pMMB207. Since the existence of a DNA nickase domain is the only feature common to the traA(Ti) and mobA/repB gene products, we hypothesized that this growth defect at low temperature is related to insufficient DNA transactions, which can somehow be alleviated by the nickase activity of those plasmid-encoded proteins. It was also noted that the above features of growth defect at low temperatures were seen in L. dumoffii cells parasitizing the amebic host Acanthamoeba culbertsoni.


Fems Microbiology Letters | 2011

Characterization of MbrC involved in bacitracin resistance in Streptococcus mutans

Norio Kitagawa; Susumu Shiota; Yukie Shibata; Toru Takeshita; Yoshihisa Yamashita

Streptococcus mutans, a major etiological agent of dental caries, is resistant to bacitracin. Microarray analysis revealed that mbrA and mbrB, encoding a putative ATP-binding cassette transporter, are prominently induced in the presence of bacitracin. On the basis of the latest report that MbrC, a putative response regulator in a two-component signaling system, binds the promoter region of mbrA and thus regulates its transcription, we cut into the mechanism by generating a mutant MbrC (D(54) N-MbrC) that substituted asparagine for aspartate at position 54, the predicted phosphorylation site. MbrC, but not the mutant D(54) N-MbrC, showed affinity for a DNA probe that contained the hypothetical mbrA promoter sequence. Furthermore, we introduced a point mutation (D(54) N-MbrC) into UA159; this mutant strain exhibited neither mbrA induction nor resistance in the presence of bacitracin. These data suggest that the aspartate residue at position 54 of MbrC is a promising candidate for phosphorylation in a bacitracin-sensing system and indispensable for S. mutans bacitracin resistance.


Mutation Research-dna Repair | 1992

UV endonuclease-mediated enhancement of UV survival in Micrococcus luteus: evidence revealed by deficiency in the Uvr homolog.

Hiroaki Nakayama; Susumu Shiota; Keiko Umezu

Unlike its phage T4 counterpart (also known as endonuclease V), Micrococcus luteus UV endonuclease (pyrimidine dimer DNA glycosylase/apurinic-apyrimidinic endonuclease) has suffered from lack of genetic evidence to implicate it in the promotion of UV survival of the cell, i.e., mutants with its deficiency are no more UV-sensitive than the wild type. On the assumption that the contribution of UV endonuclease is obscured by the presence of a homolog of Escherichia coli UvrABC endonuclease, which has recently been identified in this bacterium, survival studies were carried out in its absence. With 254-nm UV irradiation, which generates not only pyrimidine dimers but also 6-4 photoproducts as lethal lesions, a double mutant defective in both UV endonuclease and the Uvr homolog was shown to be more sensitive than a single mutant defective only in the latter, with a dose reduction factor of approximately 2 at the survival level of 37%. Furthermore, molecular photosensitization, which produces only pyrimidine dimers, revealed an even greater difference in sensitivity, the dose reduction factor being about 3.4. These results indicate that the contribution to cell survival of UV endonuclease, an enzyme specific for pyrimidine dimers, is manifest if the backup by the Uvr homolog is absent.

Collaboration


Dive into the Susumu Shiota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Qin

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge