Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susumu Tanimura is active.

Publication


Featured researches published by Susumu Tanimura.


Journal of The American Society of Nephrology | 2006

Extracellular Signal–Regulated Kinase Inhibition Slows Disease Progression in Mice with Polycystic Kidney Disease

Sayu Omori; Mariko Hida; Hisayo Fujita; Hisahide Takahashi; Susumu Tanimura; Michiaki Kohno; Midori Awazu

The expression of mitogen-activated protein kinases (MAPK) in DBA/2-pcy/pcy (pcy) mice, a murine model of polycystic kidney disease was investigated. Proliferating cell nuclear antigen-positive cells were recognized in cyst epithelium from embryonic day 14.5 to 25 wk of age. Extracellular signal-regulated kinase (ERK) was expressed in the renal tubules of control and pcy mice, but stronger immunostaining was observed in cyst epithelium. Phosphorylated ERK was detected only in pcy mice and was localized predominantly in the cysts. p38 MAPK (p38) was no longer expressed after birth in controls but was detected in the cyst epithelium and in occasional tubular cells of pcy mice at all stages examined. c-Jun N-terminal kinase (JNK) was expressed in all tubular segments of controls after neonatal day 7, whereas in pcy kidneys, tubules became positive for JNK after 8 wk, and the cysts expressed little JNK. Administration of an oral MAP/ERK kinase inhibitor, PD184352, 400 mg/kg per d, to 10-wk-old pcy mice daily for the first week and then every third day for 6 additional weeks significantly decreased BP, kidney weight, serum creatinine level, and water intake and significantly increased urine osmolality. The cystic index and expression of phosphorylated ERK and ERK were significantly lower in PD184352-treated pcy mice. These results demonstrate that the expression of MAPK is dysregulated in cyst epithelium and that inhibition of ERK slowed the progression of renal disease in pcy mice.


Oncogene | 1998

Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering

Susumu Tanimura; Yuji Chatani; Rika Hoshino; Masahiro Sato; Shin-ichi Watanabe; Tadashi Kataoka; Toshikazu Nakamura; Michiaki Kohno

Hepatocyte growth factor (HGF) markedly induced the spreading, dissociation and scattering of Madin–Darby canine kidney epithelial cells (MDCK) and human stomach adenocarcinoma cells (TMK1). Scattering of MDCK and TMK1 cells was induced by 12-O-tetradecanoyl-phorbol-13-acetate (PMA) and epidermal growth factor (EGF), respectively. In all these agent-stimulated cells, rapid activation of Raf-1, MAP kinase/ERK kinase (MEK), 41/43 kDa MAP kinases and p90rsk was commonly observed. In contrast, PMA neither induced the scattering nor activation of all these kinases in TMK1 cells. Pretreatment of MDCK and TMK1 cells with 2-(2-amino-3-methoxyphenyl) choromone (AMPC), a specific inhibitor of MEK, selectively inhibited the HGF-, PMA- and EGF-stimulated activities of MEK, 41/43 kDa MAP kinases and p90rsk in a dose dependent manner. AMPC-pretreatment, however, did not affect HGF-, PMA- or EGF-induced activation of Raf-1, nor HGF-induced activation of phosphatidylinositol 3-kinase in these cells. Importantly, HGF-, PMA- and EGF-induced scattering of MDCK and TMK1 cells was inhibited at doses of AMPC similar to those that gave comparable levels of inhibition of the activities of MEK, 41/43 kDa MAP kinases and p90rsk. These results suggest that activation of the 41/43 kDa MAP kinase signaling pathway is required for the motility response of MDCK and TMK1 cells induced by agents such as HGF, PMA and EGF.


Journal of Biological Chemistry | 2009

GEF-H1 Mediates Tumor Necrosis Factor-α-induced Rho Activation and Myosin Phosphorylation ROLE IN THE REGULATION OF TUBULAR PARACELLULAR PERMEABILITY

Eli Kakiashvili; Pam Speight; Faiza Waheed; Romy Seth; Monika Lodyga; Susumu Tanimura; Michiaki Kohno; Ori D. Rotstein; Andras Kapus; Katalin Szászi

Tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-alpha, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-alpha on the Rho pathway in tubular cells (LLC-PK(1) and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-alpha-induced alterations of paracellular permeability. We show that TNF-alpha induced a rapid and sustained RhoA activation that led to stress fiber formation and Rho kinase-dependent myosin light chain (MLC) phosphorylation. To identify new regulators connecting the TNF receptor to Rho signaling, we applied an affinity precipitation assay with a Rho mutant (RhoG17A), which captures activated GDP-GTP exchange factors (GEFs). Mass spectrometry analysis of the RhoG17A-precipitated proteins identified GEF-H1 as a TNF-alpha-activated Rho GEF. Consistent with a central role of GEF-H1, its down-regulation by small interfering RNA prevented the activation of the Rho pathway. Moreover GEF-H1 and Rho activation are downstream of ERK signaling as the MEK1/2 inhibitor PD98059 mitigated TNF-alpha-induced activation of these proteins. Importantly TNF-alpha enhanced the ERK pathway-dependent phosphorylation of Thr-678 of GEF-H1 that was key for activation. Finally the TNF-alpha-induced paracellular permeability increase was absent in LLC-PK(1) cells stably expressing a non-phosphorylatable, dominant negative MLC. In summary, we have identified the ERK/GEF-H1/Rho/Rho kinase/phospho-MLC pathway as the mechanism mediating TNF-alpha-induced elevation of tubular epithelial permeability, which in turn might contribute to kidney injury.Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-α, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-α on the Rho pathway in tubular cells (LLC-PK1 and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-α-induced alterations of paracellular permeability. We show that TNF-α induced a rapid and sustained RhoA activation that led to stress fiber formation and Rho kinase-dependent myosin light chain (MLC) phosphorylation. To identify new regulators connecting the TNF receptor to Rho signaling, we applied an affinity precipitation assay with a Rho mutant (RhoG17A), which captures activated GDP-GTP exchange factors (GEFs). Mass spectrometry analysis of the RhoG17A-precipitated proteins identified GEF-H1 as a TNF-α-activated Rho GEF. Consistent with a central role of GEF-H1, its down-regulation by small interfering RNA prevented the activation of the Rho pathway. Moreover GEF-H1 and Rho activation are downstream of ERK signaling as the MEK1/2 inhibitor PD98059 mitigated TNF-α-induced activation of these proteins. Importantly TNF-α enhanced the ERK pathway-dependent phosphorylation of Thr-678 of GEF-H1 that was key for activation. Finally the TNF-α-induced paracellular permeability increase was absent in LLC-PK1 cells stably expressing a non-phosphorylatable, dominant negative MLC. In summary, we have identified the ERK/GEF-H1/Rho/Rho kinase/phospho-MLC pathway as the mechanism mediating TNF-α-induced elevation of tubular epithelial permeability, which in turn might contribute to kidney injury.


Biochemical and Biophysical Research Communications | 2003

Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44.

Susumu Tanimura; Keita Asato; Shuh-hei Fujishiro; Michiaki Kohno

Elevated expression of matrix metalloproteinases (MMPs) is associated with increased metastatic potential in many tumor cells. As activation of the ERK pathway has been linked to the expression of MMP-9, we examined a possible correlation between ERK activation, MMP-9 expression, and invasive phenotype in human tumor cells. Activation state of the ERK pathway in tumor cells was well correlated with the invasive phenotype, which was determined by the ability of cells to invade through reconstituted extracellular matrix. Elevated expression of MMP-9 as well as of MMP-3, MMP-14, and CD44 was observed in tumor cells in which constitutive activation of the ERK pathway is detected. Blockade of the ERK pathway by treatment with PD184352, a specific and powerful inhibitor of mitogen-activated protein (MAP) kinase/ERK kinase (MEK), suppressed the expression of MMP-3, MMP-9, MMP-14, and CD44, and inhibited markedly the invasiveness of tumor cells. These results imply that, in addition to anti-proliferative effects, specific blockade of the ERK pathway is expected to result in anti-metastatic effects in tumor cells.


Cancer Science | 2008

Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross‐resistance to a wide range of DNA‐damaging drugs

Kei-ichi Ozaki; Futaba Kishikawa; Masashi Tanaka; Toshiaki Sakamoto; Susumu Tanimura; Michiaki Kohno

Although DNA‐damaging agents are among the most effective anticancer drugs in clinical use, their overall effectiveness is limited by the development of cross‐resistance to these drugs. Given that histone deacetylase (HDAC) inhibitors increase the acetylation of core histones, resulting in an open chromatin configuration that is more accessible to DNA‐targeting agents, we examined whether HDAC inhibitors might enhance the cytotoxicity of DNA‐damaging drugs in six human ovarian tumor cell lines that exhibit different cisplatin sensitivities. Low concentrations of HDAC inhibitors, which alone exhibited little cytotoxicity, markedly enhanced the induction of apoptotic cell death not only by cisplatin but also by a wide variety of DNA‐targeting anticancer drugs in these tumor cell lines, irrespective of their sensitivities to the respective drugs. In contrast, HDAC inhibitors did not increase the cytotoxicity of metabolic antagonists or microtubule‐targeting agents. HDAC inhibitors potentiated both the phosphorylation of histone H2AX on serine‐139 (a marker of DNA double‐strand breaks) as well as the accumulation of reactive oxygen species induced by DNA‐damaging agents in tumor cells. The enhanced generation of reactive oxygen species appeared to be responsible for the enhanced apoptotic cell death induced by the combination of these drugs. These results indicate that the combination of an HDAC inhibitor with a wide variety of DNA‐damaging agents is a promising chemotherapeutic strategy for the eradication of tumor cells, regardless of whether the cells are sensitive or resistant to the DNA‐damaging anticancer drugs. (Cancer Sci 2008; 99: 376–384)


Journal of Biological Chemistry | 2002

Prolonged Nuclear Retention of Activated Extracellular Signal-regulated Kinase 1/2 Is Required for Hepatocyte Growth Factor-induced Cell Motility

Susumu Tanimura; Kayo Nomura; Kei-ichi Ozaki; Masafumi Tsujimoto; Takahito Kondo; Michiaki Kohno

We examined the signaling pathway by which hepatocyte growth factor (HGF) induces cell motility, with special focus on the role of extracellular signal-regulated kinase (ERK) in the nucleus. We used Madin-Darby canine kidney cells overexpressing ERK2 because of their prominent motility response to HGF. HGF stimulation of the cells induces not only a rapid, marked, and sustained activation and rapid nuclear accumulation of ERK1/2, but also a prolonged nuclear retention of the activated ERK1/2. Interruption of the ERK1/2 activation by PD98059 treatment of the cells 30 min after HGF stimulation abolishes the HGF-induced cell motility. Enforced cytoplasmic retention of the activated ERK1/2 by the expression of an inactive form of MKP-3 cytoplasmic phosphatase inhibits the cell motility response. Although epidermal growth factor stimulation of the cells induces the activation and nuclear accumulation of ERK1/2, it does not induce the prolonged nuclear retention of the activated ERK1/2, and fails to induce cell motility. In the nucleus, activated ERK1/2 continuously phosphorylate Elk-1, leading to the prolonged expression of c-fos, which results in the expression of several genes such as matrix metalloproteinase(mmp)-9; MMP-9 activity is required for the induction of the cell motility response. Our results indicate that the sustained activity of ERK1/2 in the nucleus is required for the induction of HGF-induced cell motility.


Emerging Infectious Diseases | 2011

Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand.

Anusak Kerdsin; Surang Dejsirilert; Parichart Puangpatra; Saowalak Sripakdee; Koranan Chumla; Nitsara Boonkerd; Pitimol Polwichai; Susumu Tanimura; Dan Takeuchi; Tatsuya Nakayama; Shota Nakamura; Yukihiro Akeda; Marcelo Gottschalk; Pathom Sawanpanyalert; Kazunori Oishi

To examine associations between clinical features of Streptococcus suis serotype 2 infections in humans in Thailand and genotypic profiles of isolates, we conducted a retrospective study during 2006–2008. Of 165 patients for whom bacterial cultures of blood, cerebrospinal fluid, or both were positive for S. suis serotype 2, the major multilocus sequence types (STs) found were ST1 (62.4%) and ST104 (25.5%); the latter is unique to Thailand. Clinical features were examined for 158 patients. Infections were sporadic; case-fatality rate for adults was 9.5%, primarily in northern Thailand. Disease incidence peaked during the rainy season. Disease was classified as meningitis (58.9%) or nonmeningitis (41.1%, and included sepsis [35.4%] and others [5.7%]). Although ST1 strains were significantly associated with the meningitis category (p<0.0001), ST104 strains were significantly associated with the nonmeningitis category (p<0.0001). The ST1 and ST104 strains are capable of causing sepsis, but only the ST1 strains commonly cause meningitis.


Biochemical and Biophysical Research Communications | 2008

ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA

Shuh-hei Fujishiro; Susumu Tanimura; Shogo Mure; Yuji Kashimoto; Kazushi Watanabe; Michiaki Kohno

Rho GTPases play an essential role in the regulation of many cellular processes. Although various guanine nucleotide exchange factors (GEFs) are involved in the activation of Rho GTPases, the precise mechanism regulating such activity remains unclear. We have examined whether ERK1/2 are involved in the phosphorylation of GEF-H1, a GEF toward RhoA, to modulate its activity. Expression of GEF-H1 in HT1080 cells with constitutive ERK1/2 activation induced its phosphorylation at Thr(678), which was totally abolished by treating the cells with PD184352, an ERK pathway inhibitor. Stimulation of HeLa S3 cells with 12-O-tetradecanoyl-phorbol-13-acetate induced the phosphorylation of GEF-H1 in an ERK-dependent manner. ERK1/2-mediated Thr(678)-phosphorylation enhanced the guanine nucleotide exchange activity of GEF-H1 toward RhoA. These results suggest that the ERK pathway, by enhancing the GEF-H1 activity, contributes to the activation of RhoA to regulate the actin assembly, a necessary event for the induction of cellular responses including proliferation and motility.


Journal of Cell Science | 2005

Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms

Kei-ichi Ozaki; Satsuki Miyazaki; Susumu Tanimura; Michiaki Kohno

Strict regulation of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway is essential for maintaining balanced growth in multi-cellular organisms. Several negative regulators of the pathway have been identified which include Sprouty proteins. Mammalian cells express four Sprouty isoforms (Sprouty1-4) in an ERK-dependent manner. In this study, we have examined the molecular mechanisms by which Sprouty proteins elicit their inhibitory effects on the RTK/ERK pathway, with special focus on the co-operation among Sprouty isoforms. The four mammalian Sprouty isoforms interact with each other, most probably to form hetero- as well as homo-oligomers through their C-terminal domains. Sprouty1 specifically interacts with Grb2, whereas Sprouty4 interacts with Sos1. Although any of the Sprouty isoforms by itself inhibits the fibroblast growth factor-2 (FGF-2)-induced activation of the ERK pathway significantly, hetero-oligomers show a more pronounced inhibitory activity. The hetero-oligomer formed between Sprouty1 and Sprouty4 exhibits the most potent inhibitory effect on ERK activation through its highly effective ability to suppress the association of Grb2-Sos1 complex with FRS2. The cooperative interactions observed among Sprouty isoforms could represent an advanced system that functions to regulate strictly the activation state of the RTK/ERK pathway in mammalian cells.


Biochemical and Biophysical Research Communications | 2010

Blockade of the ERK or PI3K–Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib

Kei-ichi Ozaki; Masaki Kosugi; Nobuyuki Baba; Kohsuke Fujio; Toshiaki Sakamoto; Shinya Kimura; Susumu Tanimura; Michiaki Kohno

Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.

Collaboration


Dive into the Susumu Tanimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge