Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sutapa Kole is active.

Publication


Featured researches published by Sutapa Kole.


Endocrinology | 2009

S-Glutathionylation Impairs Signal Transducer and Activator of Transcription 3 Activation and Signaling

Yi Xie; Sutapa Kole; Patricia Precht; Michael J. Pazin; Michel Bernier

S-glutathionylation is a physiological, reversible protein modification of cysteine residues with glutathione in response to mild oxidative stress. Because the key cell growth regulator signal transducer and activator of transcription (STAT) 3 is particularly susceptible to redox regulation, we hypothesized that oxidative modification of cysteine residues of STAT3 by S-glutathionylation may occur. Herein, we show that the cysteine residues of STAT3 are modified by a thiol-alkylating agent and are the targets of S-glutathionylation. STAT3 protein thiol reactivity was reversibly attenuated with concomitant increase in the S-glutathionylation of STAT3 upon treatment of human HepG2 hepatoma cells with pyrrolidine dithiocarbamate, glutathione disulfide, or diamide. Under these conditions there was a marked reduction in IL-6-dependent STAT3 signaling, including decreased STAT3 tyrosine phosphorylation, loss in nuclear accumulation of STAT3, and impaired expression of target genes, such as fibrinogen-gamma. In a cell-free system, diamide induced glutathionylation of STAT3, which was decreased upon addition of glutaredoxin (GRX)-1, a deglutathionylation enzyme, or the reducing agent, dithiothreitol. Glutathionylated STAT3 was a poor Janus protein tyrosine kinase 2 substrate in vitro, and it exhibited low DNA-binding activity. Cellular GRX-1 activity was inhibited by diamide and pyrrolidine dithiocarbamate treatment; however, ectopic expression of GRX-1 was accompanied by a modest increase in phosphorylation, nuclear translocation, and DNA-binding ability of STAT3 in response to IL-6. These results are the first to show S-glutathionylation of STAT3, a modification that may exert regulatory function in STAT3 signaling.


Journal of Biological Chemistry | 2007

Filamin A-mediated Down-regulation of the Exchange Factor Ras-GRF1 Correlates with Decreased Matrix Metalloproteinase-9 Expression in Human Melanoma Cells

Tie Nian Zhu; Hua Jun He; Sutapa Kole; Theresa D'Souza; Rachana Agarwal; Patrice J. Morin; Michel Bernier

The actin-binding protein filamin A (FLNa) is associated with diverse cellular processes such as cell motility and signaling through its scaffolding properties. Here we examine the effect of FLNa on the regulation of signaling pathways that control the expression of matrix metalloproteinases (MMPs). The lack of FLNa in human M2 melanoma cells was associated with constitutive and phorbol ester-induced expression and secretion of active MMP-9 in the absence of MMP-2 up-regulation. M2 cells displayed stronger MMP-9 production and activity than their M2A7 counterparts where FLNa had been stably reintroduced. Using an MMP-9 promoter construct (pMMP-9-Luc), in vitro kinase assays, and genetic and pharmacological approaches, we demonstrate that FLNa mediated transcriptional down-regulation of pMMP-9-Luc by suppressing the constitutive hyperactivity of the Ras/MAPK extracellular signal-regulated kinase (ERK) cascade. Experimental evidence indicated that this phenomenon was associated with destabilization and ubiquitylation of Ras-GRF1, a guanine nucleotide exchange factor that activates H-Ras by facilitating the release of GDP. Ectopic expression of Ras-GRF1 was accompanied by ERK activation and elevated levels of MMP-9 in M2A7 cells, whereas a catalytically inactive dominant negative Ras-GRF1, which prevented ERK activation, reduced MMP-9 expression in M2 cells. Our results indicate that expression of FLNa regulates constitutive activation of the Ras/ERK pathway partly through a Ras-GRF1 mechanism to modulate the production of MMP-9.


Journal of Biological Chemistry | 2006

Binding of Manumycin A Inhibits IκB Kinase β Activity

Michel Bernier; Yong-Kook Kwon; Sanjay K. Pandey; Tie-Nian Zhu; Ruijing Zhao; Alexandre Maciuk; Hua-Jun He; Rafael DeCabo; Sutapa Kole

IκB kinase (IKK) catalytic subunits play a key role in cytokinemediated nuclear factor (NF)-κB signaling, and a loss of NF-κB function appears to inhibit inflammation and oncogenesis. Manumycin A is a potent and selective farnesyltransferase inhibitor with antitumor activity. We found that manumycin A caused a rapid and potent inhibition of IKK activity induced by tumor necrosis factor α in a number of cell types. Most unexpectedly, other classes of farnesyltransferase inhibitors had no inhibitory effect. To identify the molecular mechanisms of manumycin A action, cultured human HepG2 hepatoma cells were transiently transfected with various IKKα and IKKβ constructs, and a striking difference in manumycin A sensitivity was observed. Furthermore, cells expressing wild-type IKKβ and IKKβ mutated in the activation loop at Cys-179 exhibited covalent homotypic dimerization of IKKβ in response to manumycin A, whereas substitution of Cys-662 and -716 conferred protection against dimer formation. Direct inhibition of IKK activity and formation of stable IKKβ dimers were observed in the presence of manumycin A that could be blocked by dithiothreitol. IKK interaction with the adaptor protein IKKγ/NEMO was disrupted in manumycin A-treated cells. Most importantly, administration of manumycin A to mice xenografted with murine B16F10 tumors caused potent IKK-suppressive effects. Thus, manumycin A with its epoxyquinoid moieties plays an important regulatory function in IKK signaling through pathways distinct from its role as a protein farnesylation inhibitor.


Journal of Biological Chemistry | 2006

Pyrrolidine dithiocarbamate inhibits interleukin-6 signaling through impaired STAT3 activation and association with transcriptional coactivators in hepatocytes

Hua Jun He; Tie Nian Zhu; Yi Xie; Jinshui Fan; Sutapa Kole; Satya Saxena; Michel Bernier

Interleukin (IL)-6 is a proinflammatory cytokine that has been implicated in the expression of acute phase plasma proteins and hepatic insulin resistance through activation of the JAK/STAT3 pathway. Although previous studies have demonstrated that pyrrolidine dithiocarbamate (PDTC) exerts protection against inflammatory responses, its role in the regulation of IL-6 receptor signaling remains unclear. Here we show that treatment of cultured HepG2 hepatoma cells with PDTC inhibits IL-6-stimulated tyrosine phosphorylation and subsequent nuclear translocation of STAT3 in a dose- and time-dependent fashion. No inhibition of JAK-1 activity was observed. To provide insight into PDTC signaling, we constructed a conditionally active STAT3 by fusing it with the ligand binding domain of the estrogen receptor (STAT3-ER). In the presence of 4-hydroxytamoxifen STAT3-ER was translocated in the nucleus of HepG2 cells in a phosphorylation-independent manner, and treatment with PDTC mitigated the response. Although STAT3 coprecipitated with heat-shock protein 90 (Hsp90) in control cells, coprecipitation of the two proteins was greatly reduced after PDTC treatment or after exposure to geldanamycin, an Hsp90 inhibitor. As a result there was a decrease in IL-6-induced association of STAT3 with the transcriptional coactivators FOXO1a and C/EBPβ together with significant reduction in the expression of SOCS-3 protein and that of two major acute phase plasma proteins. Importantly, treatment of HepG2 cells and a primary culture of rat hepatocytes with PDTC restored insulin responsiveness that was abrogated by IL-6. These studies are consistent with the ability of PDTC to down-regulate IL-6-induced STAT3 activation by altering the stability of STAT3-Hsp90 complex.


Endocrinology | 2009

Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

Jennifer L. Fiori; Tie-Nian Zhu; Michael P. O'Connell; Keith S. Hoek; Fred E. Indig; Brittany P. Frank; Christa Morris; Sutapa Kole; Joanne Hasskamp; George Elias; Ashani T. Weeraratna; Michel Bernier

The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway.


The International Journal of Biochemistry & Cell Biology | 2010

Activation of heat shock factor 1 plays a role in pyrrolidine dithiocarbamate-mediated expression of the co-chaperone BAG3.

Shaoming Song; Sutapa Kole; Patricia Precht; Michael J. Pazin; Michel Bernier

Adaptive responses to physical and inflammatory stressors are mediated by transcription factors and molecular chaperones. The transcription factor heat shock factor 1 (HSF1) has been implicated in extending lifespan in part by increasing expression of heat shock response genes. Pyrrolidine dithiocarbamate (PDTC) is a small thiol compound that exerts in vivo and in vitro anti-inflammatory properties through mechanisms that remain unclear. Here we report that PDTC induced the release of monomeric HSF1 from the molecular chaperone heat shock protein 90 (Hsp90), with concomitant increase in HSF1 trimer formation, translocation to the nucleus, and binding to promoter of target genes in human HepG2 cells. siRNA-mediated silencing of HSF1 blocked BAG3 gene expression by PDTC. The protein levels of the co-chaperone BAG3 and its interaction partner Hsp72 were stimulated by PDTC in a dose-dependent fashion, peaking at 6h. Inhibition of Hsp90 function by geldanamycin derivatives and novobiocin elicited a pattern of HSF1 activation and BAG3 expression that was similar to PDTC. Chromatin immunoprecipitation studies showed that PDTC and the inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhanced the binding of HSF1 to the promoter of several target genes, including BAG3, HSPA1A, HSPA1B, FKBP4, STIP1 and UBB. Cell treatment with PDTC increased significantly the level of Hsp90α thiol oxidation, a posttranslational modification known to inhibit its chaperone function. These results unravel a previously unrecognized mechanism by which PDTC and related compounds could confer cellular protection against inflammation through HSF1-induced expression of heat shock response genes.


Journal of Biological Chemistry | 1996

A Synthetic Peptide Derived from a COOH-terminal Domain of the Insulin Receptor Specifically Enhances Insulin Receptor Signaling

Hemanta K. Kole; Anthony S. Liotta; Sutapa Kole; Jesse Roth; Chahrzad Montrose-Rafizadeh; Michel Bernier

The role of the insulin receptor COOH-terminal domain in the regulation of insulin signal transduction was explored with a variety of synthetic peptides. One of the peptides, termed peptide HC, whose structure corresponds to residues 1293-1307 of the insulin proreceptor sequence, enhanced insulin-stimulated autophosphorylation of the insulin receptor in cell-free systems and in semipermeabilized Chinese hamster ovary (CHO) cells that had been transfected with an expression plasmid encoding the human insulin receptor (CHO/HIRc) at concentrations where there was no detectable effect on basal autophosphorylation levels or on receptor dephosphorylation. A lipophilic analogue of peptide HC, stearyl peptide HC, added to intact CHO/HIRc cells enhanced significantly insulin-stimulated insulin receptor autophosphorylation while having no effect on ligand-stimulated receptor phosphorylation in CHO cells overexpressing either the IGF-1 receptor or epidermal growth factor receptor. Addition of stearyl peptide HC to CHO/HIRc cells resulted in a 2.4 ± 0.3-fold increase in the amount of insulin-stimulated phosphatidylinositol 3-kinase detected in anti-IRS-1 immunoprecipitates and a 2.1 ± 0.6-fold increase in the levels of tyrosine phosphorylation of mitogen-activated protein kinase in response to insulin. Finally, a derivative of peptide HC coupled to a biotin moiety was prepared and showed to bind with the β-subunit of the wild-type insulin receptor and a truncated receptor that lacks 43 amino acids from its carboxyl terminus. However, there was little binding, if any, of the peptide with the IGF-1 receptors or the epidermal growth factor receptors. Taken together, our data demonstrate that a pentadecapeptide related to the carboxyl terminus of the insulin receptor binds to the insulin receptor β-subunit and that this interaction may contribute to the increased receptors intrinsic activity and signal transduction.


Journal of Cell Biology | 2003

Role of the pleckstrin homology domain of PLCγ1 in its interaction with the insulin receptor

Yong-Kook Kwon; Hyeung-Jin Jang; Sutapa Kole; Hua-Jun He; Michel Bernier

A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) β-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C γ1 (PLCγ1) by mass spectrometry analysis. PLCγ1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCγ1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCγ1 Src homology 2 domains, and instead required the pleckstrin homology (PH)–EF-hand domain. Expression of the PH–EF construct blocked endogenous PLCγ1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCγ1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCγ1 in PLCγ1 −/− fibroblasts improved MAPK activation by insulin. Our results show that PLCγ1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.


BioTechniques | 2012

A chemical cross-linking method for the analysis of binding partners of heat shock protein-90 in intact cells.

Shaoming Song; Sutapa Kole; Michel Bernier

Members of the heat shock protein-90 (Hsp90) family are key regulators of biological processes through dynamic interaction with a multitude of protein partners. However, the transient nature of these interactions hinders the identification of Hsp90 interactors. Here we show that chemical cross-linking with ethylene glycolbis (succinimidylsuccinate), but not shorter cross-linkers, generated an abundant 240-kDa heteroconjugate of the molecular chaperone Hsp90 in different cell types. The combined use of pharmacological and genetic approaches allowed the characterization of the subunit composition and subcellular compartmentalization of the multimeric protein complex, termed p240. The in situ formation of p240 did not require the N-terminal domain or the ATPase activity of Hsp90. Utilizing subcellular fractionation techniques and a cell-impermeant cross-linker, subpopulations of p240 were found to be present in both the plasma membrane and the mitochondria. The Hsp90-interacting proteins, including Hsp70, p60Hop and the scaffolding protein filamin A, had no role in governing the formation of p240. Therefore, chemical cross-linking combined with proteomic methods has the potential to unravel the protein components of this p240 complex and, more importantly, may provide an approach to expand the range of tools available to the study of the Hsp90 interactome.


Journal of Cellular Biochemistry | 2000

Discrete region of the insulin receptor carboxyl terminus plays key role in insulin action.

Michel Bernier; Hemanta K. Kole; Chahrzad Montrose-Rafizadeh; Sutapa Kole

In the present study, we attempted to determine the importance of a 23–amino‐acid sequence within the carboxyl terminus of the human insulin receptor (IR) molecule in modulating insulin action in Chinese hamster ovary cells. Stable expression of a minigene encoding the receptor fragment led to an increase in insulin‐induced IR autophosphorylation that was 2.4‐fold higher when compared to that of IR‐expressing cells transfected with empty vector. Insulin‐stimulated downstream signaling was also significantly elevated in cells expressing the minigene. It was found that expression of the minigene had no effect toward insulin‐like growth factor I receptor kinase activity and function. These results indicate that the IR carboxyl terminus contains a motif that acts as a physiologic modulator of insulin signaling. J. Cell. Biochem. 78:160–169, 2000. Published 2000 Wiley‐Liss, Inc.

Collaboration


Dive into the Sutapa Kole's collaboration.

Top Co-Authors

Avatar

Michel Bernier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Garant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hemanta K. Kole

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hua Jun He

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yong-Kook Kwon

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hua-Jun He

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hyeung-Jin Jang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael J. Pazin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia Precht

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge