Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suwido H. Limin is active.

Publication


Featured researches published by Suwido H. Limin.


Ecology | 2008

CARBON DIOXIDE AND METHANE FLUXES IN DRAINED TROPICAL PEAT BEFORE AND AFTER HYDROLOGICAL RESTORATION

Jyrki Jauhiainen; Suwido H. Limin; Hanna Silvennoinen; Harri Vasander

Present tropical peat deposits are the outcome of net carbon removal from the atmosphere and form one of the largest terrestrial organic carbon stores on the Earth. Reclamation of pristine tropical peatland areas in Southeast Asia increased strikingly during the last half of the 20th century. Drainage due to land-use change is one of the main driving factors accelerating carbon loss from the ecosystem. Dams were built in drainage-affected peatland area canals in Central Kalimantan, Indonesia, in order to evaluate major patterns in gaseous carbon dioxide and methane fluxes and in peat hydrology immediately before and after hydrologic restoration. The sites included peat swamp forest and deforested burned area, both affected by drainage for nearly 10 years. Higher annual minimum soil water table levels prevailed on both sites after restoration; the deforested site water table level prevailed considerably longer near the peat surface, and the forest water table level remained for a longer period in the topmost 30 cm peat profile after restoration. Forest soil gas fluxes were clearly higher in comparison to the deforested area. Cumulative forest floor CO2 emissions (7305-7444 g x m(-2) x yr(-1); 166.0-169.2 mol CO2 x m(-2) x yr(-1)) and the deforested site CO2 emissions (2781-2608 g x m(-2) x yr(-1); 63.2-59.3 mol CO2 x m(-2) x yr(-1)) did not markedly reflect the notably differing hydrological conditions the year before and after restoration. The forest floor was a weak CH4 sink (-0.208 to -0.368 g x m(-2) x yr(-1); -13.0 to -22.9 mmol CH4 x m(-2) x yr(-1)) and the deforested site a comparable CH4 source (0.197-0.275 g x m(-2) x yr(-1); 12.3-17.1 mmol CH4 x m(-2) x yr(-1)) in the study period. In general, higher soil water table levels had a relatively small effect on the annual CH4 emission budgets. In the two site types the gas flux response into hydrological conditions in degraded tropical peat can be attributed to differing CO2 and CH4 dynamics, peat physical characteristics, and vegetation.


Soil Science and Plant Nutrition | 2006

Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia

Fumiaki Takakai; Tomoaki Morishita; Yasuyuki Hashidoko; Untung Darung; Kanta Kuramochi; Salampak Dohong; Suwido H. Limin; Ryusuke Hatano

Abstract Nitrous oxide (N2O) fluxes from tropical peatland soils were measured at a grassland, three croplands, a natural forest, a burned forest and a regenerated forest in Central Kalimantan, Indonesia. Only croplands received fertilization (665–1278 kg N ha−1 year−1). Mean annual N2O emissions from croplands were 21–131 kg N ha−1 year−1 in 2002–2003 and 52–259 kg N ha−1 year−1 in 2003–2004, and were significantly higher than the emissions from other comparable sites. Cropland N2O emissions were among the highest values reported from cultivated tropical, temperate and boreal organic soils. Mean annual N2O emissions were 7.1 (2002–2003) and 23 (2003–2004) kg N ha−1 year−1 from grassland, and were significantly higher than in natural, regenerated and burned forests (0.62, 0.40 and 0.97 kg N ha−1 year−1 in 2002–2003 and 4.4, 4.0 and 1.5 kg N ha−1 year−1 in 2003–2004, respectively). Annual N2O emissions did not differ significantly between forests in 2002–2003, but were significantly lower in burned forest in 2003–2004. Annual N2O emission was significantly correlated between years. Regression analysis revealed that annual N2O emissions in 2003–2004 were 1.9-fold the corresponding 2002–2003 value (annual precipitation of 2339 and 1994 mm, respectively). N2O fluxes were higher during the rainy season than during the dry season at all sites except the regenerated forest. N2O fluxes in cropland and grassland were significantly lower when the water-filled pore space (WFPS) was less than 60–70%, and increased with an increase in soil NO3–N concentration when WFPS exceeded this threshold. Thus, changes in soil moisture were important in controlling seasonal changes in N2O emission. Our results suggest that changing land use from forestry to agriculture will increase N2O production. The effect of forest fires on N2O emission from these soils was not clear.


Forest Ecology and Management | 2003

Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia

Keitaro Tawaraya; Y. Takaya; Maman Turjaman; S.J. Tuah; Suwido H. Limin; Yutaka Tamai; Joo Young Cha; T. Wagatsuma; Mitsuru Osaki

Abstract Arbuscular mycorrhizas improve the growth and nutrient uptake of plants and are formed in 80% of all land plants. Little information is available on the status of arbuscular mycorrhizas in tropical soils. The objective of this study was to clarify mycorrhizal colonization of tree species grown in tropical peat soils. Seedlings of 22 tree species in 14 families grown in a peat swamp forest of Central Kalimantan, Indonesia were collected in 2000 and 2001. Roots were stained with 0.05% aniline blue and arbuscules, vesicles and internal hyphae were observed under a compound microscope. Seventeen of 22 species showed arbuscular mycorrhizal colonization. Arbuscular mycorrhizal colonization was observed for the first time in roots of Shorea teysmanniana, Shorea balangeran, Shorea uliginosa (Dipterocarpaceae), Calophyllum sclerophyllum, Calophyllum soulattri (Guttiferae), Cratoxylum arborescens (Guttiferae), Tetramerista glabra (Tetrameristaceae), Palaquium gutta (Sapotaceae), Melastoma melabathricum (Melastomataceae), Gonystylus bancanus (Thymelaeaceae), Hevea brasiliensis (Euphorbiaceae) and Campnosperma auriculatum (Anacardiaceae). C. soulattri, C. arborescens, G. bancanus, Acacia mangium, M. melabathricum and H. brasiliensis showed a percentage mycorrhizal colonization of 50% or higher. No arbuscular mycorrhizal colonization was found in Hopea mengarawan (Dipterocarpaceae), Koompassia malacensis (Caesalpiniaceae), Tristaniopsis whiteana (Myrtaceae), Combretocapus rotundatus (Rhizophoraceae) and Dyera costulata (Apocynaceae). It is suggested that inoculation of arbuscular mycorrhizal fungi can improve the early growth of some tree species grown in peat swamp forests and this will be expected as a key technology to rehabilitate disturbed peatlands.


Primates | 2008

Density and population estimate of gibbons (Hylobates albibarbis) in the Sabangau catchment, Central Kalimantan, Indonesia

Susan M. Cheyne; Claire J. H. Thompson; Abigail Phillips; Robyn M. C. Hill; Suwido H. Limin

We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.


Soil Science and Plant Nutrition | 2007

Fungal N2O production in an arable peat soil in Central Kalimantan, Indonesia

Yosuke Yanai; Koki Toyota; Tomoaki Morishita; Fumiaki Takakai; Ryusuke Hatano; Suwido H. Limin; Untung Darung; Salampak Dohong

Abstract To clarify the microbiological factors that explain high N2O emission in an arable peat soil in Central Kalimantan, Indonesia, a substrate-induced respiration-inhibition experiment was conducted for N2O production. The N2O emission rate decreased by 31% with the addition of streptomycin, whereas it decreased by 81% with the addition of cycloheximide, compared with a non-antibiotic-added control. This result revealed a greater contribution of the fungal community than bacterial community to the production of N2O in the soil. The population density of fungi in the soil, determined using the dilution plate method, was 5.5 log c.f.u. g−1 soil and 4.9 log c.f.u. g−1 soil in the non-selective medium (rose bengal) and the selective medium for Fusarium, respectively. The N2O-producing potential was randomly examined in each of these isolates by inoculation onto Czapek agar medium (pH 4.3) and incubation at 28°C for 14 days. Significant N2O-producing potential was found in six out of 19 strains and in five out of seven strains isolated from the non-selective and selective media, respectively. Twenty-three out of 26 strains produced more than 20% CO2 during the 14-day incubation period, suggesting the presence of facultative fungi in the soil. These strains were identified to be Fusarium oxysporum and Neocosmospora vasinfecta based on the sequence of 18S rDNA, irrespective of the N2O-producing potential and the growth potential in conditions of low O2 concentration.


Oryx | 2007

Intensive hunting of large flying foxes Pteropus vampyrus natunae in Central Kalimantan, Indonesian Borneo

Mark Harrison; Susan M. Cheyne; Suwido H. Limin

Pteropus vampyrus natunae , the Bornean subspecies of the large flying fox, has important roles in pollination but unsustainable hunting has been reported in Malaysian states. We provide the first description of hunting techniques and intensity in Indonesian Borneo. In forests around Palangka Raya this species is captured in canopy-level nets to support trade in the provincial capital. We estimate that in 2003 4,500 individuals were extracted from a single location in 30 days, which, together with trends reported in interviews with hunters and traders, suggests that hunting in this region is intensive and probably causing severe population declines. Further surveys are needed throughout Kalimantan to determine if this trend is occurring around other cities and whether intervention is needed to safeguard viable populations.


New Forests | 2005

Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improves early growth of Shorea pinanga nursery seedlings

Maman Turjaman; Yutaka Tamai; Hendrik Segah; Suwido H. Limin; Joo Young Cha; Mitsuru Osaki; Keitaro Tawaraya

Abstract.Trees of the family Dipterocarpaceae are the dominant trees in Southeast Asian tropical forests where they play an important ecological role and are also important commercially. An experiment was conducted to determine the effect of ectomycorrhizal fungi on the growth of dipterocarp species in peat soils. Seedlings of Shorea pinanga were inoculated with spores of two ectomycorrhizal fungi, Pisolithus arhizus and Scleroderma sp. were grown in pots containing sterilized peat soil for 7 months. The percentage of ectomycorrhizal colonization on S. pinanga exceeded 86%. Colonization of S. pinanga roots by ectomycorrhizal fungi resulted in increased shoot height, stem diameter, number of leaves, and shoot fresh and dry weight. Survival rates of S. pinanga were greater for inoculated seedlings than control seedlings. These results suggest that inoculation of ectomycorrhizal fungi can improve the early growth of S. pinanga grown in tropical forests and that this technique will accelerate the rehabilitation of degraded dipterocarp forests.


Environmental Research Letters | 2014

Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment

Jyrki Jauhiainen; Otto Kerojoki; Hanna Silvennoinen; Suwido H. Limin; Harry Vasander

Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. Peat temperature dynamics and heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes were monitored under four shading conditions, i.e. unshaded, 28%, 51% and 90% shading at experiment sites established on reclaimed fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Groundwater tables on the sites were at about 50 cm depth, the sites were maintained vegetation free and root ingrowth to gasflux monitoring locations was prevented. Half of the four shading areas received NPK-fertilization 50 kg ha �1 for each of N, P and K during the experiment and the other half was unfertilized. Increases in shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference in the topmost 50 cm peat profile was between the unshaded and 90% shaded surface, where the average temperatures at 5 cm depth differed up to 3.7 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilized plots and a 66% lower emission average on the fertilized plots. Correlation between peat temperature and CO2 flux suggested an approximately 8% (unfertilized) and 25% (fertilized) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO2 flux responses to the treatments remained low on degraded peatland. Fertilized conditions negatively correlated with N2O efflux with increases in temperature, suggesting a 12–36% lower efflux for each 1 °C increase in peat temperature (at 5 cm depth) at the sites. Despite the apparently similar landscapes of fallow agricultural land and degraded peatland sites, the differences in greenhouse gas dynamics are expected to be an outcome of the long-term management differences.


Soil Science and Plant Nutrition | 2011

Nitrous oxide emission derived from soil organic matter decomposition from tropical agricultural peat soil in central Kalimantan, Indonesia

Yo Toma; Fumiaki Takakai; Untung Darung; Kanta Kuramochi; Suwido H. Limin; Salampak Dohong; Ryusuke Hatano

Our previous research showed large amounts of nitrous oxide (N2O) emission (>200 kg N ha−1 year−1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80 cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607 kg N ha−1 year−1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858 kg N ha−1 year−1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15 cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.


Bioscience, Biotechnology, and Biochemistry | 2006

Linear 3-Hydroxybutyrate Tetramer (HB4) Produced by Sphingomonas sp. Is Characterized as a Growth Promoting Factor for Some Rhizomicrofloral Composers

Noriko Ogita; Yasuyuki Hashidoko; Suwido H. Limin; Satoshi Tahara

Sphingomonas spp. of α-proteobacteria often play a role in assisting the development of microfloral communities under adverse soil conditions. Using a Frateuria sp. as an indicator for bacterial growth assay, we investigated the bacterial growth-promoting factor in the culture fluids of Sphingomonas sp. EC-K085. This factor was successfully isolated and identified as linear (R,R,R,R)-3-hydroxybutyrate tetramer (HB4), having a hydroxy-end and a carboxy-end group. When 28 μg of HB4 was charged on a paper disc, impregnated Frateuria sp. cells in modified Winogradsky agar medium exhibited a promoted cell growth to form a clear colony emerging zone after a 2-day incubation.

Collaboration


Dive into the Suwido H. Limin's collaboration.

Top Co-Authors

Avatar

Untung Darung

University of Palangka Raya

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kitso Kusin

University of Palangka Raya

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge