Suzan Dziennis
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suzan Dziennis.
The Journal of Neuroscience | 2011
Xuefang Ren; Kozaburo Akiyoshi; Suzan Dziennis; Arthur A. Vandenbark; Paco S. Herson; Patricia D. Hurn; Halina Offner
Evaluation of infarct volumes and infiltrating immune cell populations in mice after middle cerebral artery occlusion (MCAO) strongly implicates a mixture of both pathogenic and regulatory immune cell subsets in stroke pathogenesis and recovery. Our goal was to evaluate the contribution of B cells to the development of MCAO by comparing infarct volumes and functional outcomes in wild-type (WT) versus B-cell-deficient μMT−/− mice. The results clearly demonstrate larger infarct volumes, higher mortality, more severe functional deficits, and increased numbers of activated T cells, macrophages, microglial cells, and neutrophils in the affected brain hemisphere of MCAO-treated μMT−/− versus WT mice. These MCAO-induced changes were completely prevented in B-cell-restored μMT−/− mice after transfer of highly purified WT GFP+ B cells that were detected in the periphery, but not the CNS. In contrast, transfer of B cells from IL-10−/− mice had no effect on infarct volume when transferred into μMT−/− mice. These findings strongly support a previously unrecognized activity of IL-10-secreting WT B cells to limit infarct volume, mortality rate, recruitment of inflammatory cells, and functional neurological deficits 48 h after MCAO. Our novel observations are the first to implicate IL-10-secreting B cells as a major regulatory cell type in stroke and suggest that enhancement of regulatory B cells might have application as a novel therapy for this devastating neurologic condition.
Reviews in The Neurosciences | 2008
Suzan Dziennis; Nabil J. Alkayed
Signal Transducers and Activators of Transcription (STATs) comprise a family of transcription factors that mediate a wide variety of biological functions in the central and peripheral nervous systems. Injury to neural tissue induces STAT activation, and STATs are increasingly recognized for their role in neuronal survival. In this review, we discuss the role of STAT3 during neural development and following ischemic and traumatic injury in brain, spinal cord and peripheral nerves. We focus on STAT3 because of the expanding body of literature that investigates protective and regenerative effects of growth factors, hormones and cytokines that use STAT3 to mediate their effect, in part through transcriptional upregulation of neuroprotective and neurotrophic genes. Defining the endogenous molecular mechanisms that lead to neuroprotection by STAT3 after injury might identify novel therapeutic targets against acute neural tissue damage as well as chronic neurodegenerative disorders.
Journal of Immunology | 2010
Bing Zhang; Sandhya Subramanian; Suzan Dziennis; Jia Jia; Masayoshi Uchida; Kozaburo Akiyoshi; Elton Migliati; Anne D. Lewis; Arthur A. Vandenbark; Halina Offner; Patricia D. Hurn
Reduced risk and severity of stroke in adult females is thought to depend on normal endogenous levels of estrogen, a well-known neuroprotectant and immunomodulator. In male mice, experimental stroke induces immunosuppression of the peripheral immune system, characterized by a reduction in spleen size and cell numbers and decreased cytokine and chemokine expression. However, stroke-induced immunosuppression has not been evaluated in female mice. To test the hypothesis that estradiol (E2) deficiency exacerbates immunosuppression after focal stroke in females, we evaluated the effect of middle cerebral artery occlusion on infarct size and peripheral and CNS immune responses in ovariectomized mice with or without sustained, controlled levels of 17-β–E2 administered by s.c. implant or the putative membrane estrogen receptor agonist, G1. Both E2- and G1-replacement decreased infarct volume and partially restored splenocyte numbers. Moreover, E2-replacement increased splenocyte proliferation in response to stimulation with anti-CD3/CD28 Abs and normalized aberrant mRNA expression for cytokines, chemokines, and chemokine receptors and percentage of CD4+CD25+FoxP3+ T regulatory cells observed in E2-deficient animals. These beneficial changes in peripheral immunity after E2 replacement were accompanied by a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased expression of CCR7 in the lesioned brain hemisphere. These results demonstrate for the first time that E2 replacement in ovariectomized female mice improves stroke-induced peripheral immunosuppression.
The Journal of Neuroscience | 2007
Suzan Dziennis; Taiping Jia; Oline K. Rønnekleiv; Patricia D. Hurn; Nabil J. Alkayed
Estradiol is protective in experimental cerebral ischemia, but the precise mechanisms remain unknown. Signal transducer and activator of transcription-3 (STAT3) is a transcription factor that is activated by estrogen, translocates to the nucleus, and induces the transcription of neuroprotective genes, such as bcl-2. We determined whether estradiol increases STAT3 activation in female rat brain after focal cerebral ischemia and whether STAT3 activation contributes to estradiol-mediated neuroprotection against ischemic brain injury. Ovariectomized (OVX) female rats with and without estradiol replacement were subjected to 2 h of middle cerebral artery occlusion (MCAO), and phosphorylated STAT3 (P-STAT3) and total STAT3 (T-STAT3) were quantified by Western blot analysis at 3 and 22 h of reperfusion. STAT3 activation was colocalized with neuronal and survival markers microtubule-associated protein 2 (MAP2) and Bcl-2 using immunohistochemistry. Infarct size was measured at 22 h after MCAO in estradiol-treated OVX animals in the presence and absence of STAT3 inhibitor cucurbitacin I (JSI-124) using 2,3,5-triphenyltetrazolium chloride staining. Estradiol increased P-STAT3 in the ischemic cortex cytosolic fraction at 3 h after MCAO without affecting T-STAT3. This was associated with increased P-STAT3 in the nuclear fraction, which remained elevated at 22 h after MCAO. The nuclear P-STAT3 colocalized with MAP2 and Bcl-2 within the peri-infarct zone. The P-STAT3 inhibitor JSI-124 abolished the protective effect of estradiol without affecting infarct size in untreated OVX rats. We conclude that estradiol increases STAT3 phosphorylation in neurons after MCAO and that STAT3 activation plays an important role in estradiol-mediated neuroprotection.
Restorative Neurology and Neuroscience | 2009
Mingyue Liu; Suzan Dziennis; Patricia D. Hurn; Nabil J. Alkayed
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Environmental Health Perspectives | 2008
Suzan Dziennis; Dongren Yang; Jian Cheng; Kim A. Anderson; Nabil J. Alkayed; Patricia D. Hurn; Pamela J. Lein
Background The “developmental origins of adult disease” hypothesis was originally derived from evidence linking low birth weight to cardiovascular diseases including stroke. Subsequently, it has been expanded to include developmental exposures to environmental contaminants as risk factors for adult onset disease. Objective Our goal in this study was to test the hypothesis that developmental exposure to poly-chlorinated biphenyls (PCBs) alters stroke outcome in adults. Methods We exposed rats to the PCB mixture Aroclor 1254 (A1254) at 0.1 or 1 mg/kg/day in the maternal diet throughout gestation and lactation. Focal cerebral ischemia was induced at 6–8 weeks of age via middle cerebral artery occlusion, and infarct size was measured in the cerebral cortex and striatum at 22 hr of reperfusion. PCB congeners were quantified in brain tissue by gas chromatography with microelectron capture detection, and cortical and striatal expression of Bcl2 and Cyp2C11 were quantified by quantitative reverse transcriptase-polymerase chain reaction. Results Developmental exposure to A1254 significantly decreased striatal infarct in females and males at 0.1 and 1 mg/kg/day, respectively. Predominantly ortho-substituted PCB congeners were detected above background levels in brains of adult females and males exposed to A1254 at 1 but not 0.1 mg/kg/day. Effects of developmental A1254 exposure on Bcl2 and Cyp2C11 expression did not correlate with effects on infarct volume. Conclusion Our data provide proof of principle that developmental exposures to environmental contaminants influence the response of the adult brain to ischemic injury and thus represent potentially important determinants of stroke susceptibility.
Brain Behavior and Immunity | 2011
Suzan Dziennis; Kozaburo Akiyoshi; Sandhya Subramanian; Halina Offner; Patricia D. Hurn
Stroke is a sexually dimorphic disease with male gender considered a disadvantage in terms of risk and disease outcome. In intact males, stroke induces peripheral immunosuppression, characterized by decreased splenocyte numbers and proliferation and altered percentages of viable T, B, and CD11b+ cells. To investigate whether the potent androgen and known immunomodulator, dihydrotestosterone (DHT), exacerbates post-stroke immunosuppression in castrated male mice after focal stroke, we evaluated the effect of middle cerebral artery occlusion (MCAO) on peripheral and central nervous system (CNS) immune responses in castrated mice with or without controlled levels of DHT. MCAO reduced spleen cell numbers in both groups, but altered T cell and B cell percentages in remaining splenocytes and concomitantly increased the percentage of CD11b+ blood cells solely in DHT-replaced animals at 24 h. Furthermore, DHT-replacement reduced splenocyte proliferation which was accompanied by an increased percentage of immunosuppressive regulatory T cells relative to castrates 96 h post-MCAO. In brain, the percentages of immune cell populations in the ischemic hemisphere relative to the non-ischemic hemisphere were similar between castrated and DHT-replaced mice after MCAO. These data suggest DHT modulates peripheral immunosuppression after MCAO but with relatively little effect on early immune response of the recovering CNS.
Brain Research | 2010
Fabio Di Domenico; Gabriella Casalena; Rukhsana Sultana; Jian Cai; William M. Pierce; Marzia Perluigi; Chiara Cini; Alessandra Baracca; Giancarlo Solaini; Giorgio Lenaz; Jia Jia; Suzan Dziennis; Stephanie J. Murphy; Nabil J. Alkayed; D. Allan Butterfield
Although the role of STAT3 in cell physiology and tissue development has been largely investigated, its involvement in the development and maintenance of nervous tissue and in the mechanisms of neuroprotection is not yet known. The potentially wide range of STAT3 activities raises the question of tissue- and gender-specificity as putative mechanisms of regulation. To explore the function of STAT3 in the brain and the hypothesis of a gender-linked modulation of STAT3, we analyzed a neuron-specific STAT3 knockout mouse model investigating the influence of STAT3 activity in brain protein expression pattern in both males and females in the absence of neurological insult. We performed a proteomic study aimed to reveal the molecular pathways directly or indirectly controlled by STAT3 underscoring its role in brain development and maintenance. We identified several proteins, belonging to different neuronal pathways such as energy metabolism or synaptic transmission, controlled by STAT3 that confirm its crucial role in brain development and maintenance. Moreover, we investigated the different processes that could contribute to the sexual dimorphic behavior observed in the incidence of neurological and mental disease. Interestingly both STAT3 KO and gender factors influence the expression of several mitochondrial proteins conferring to mitochondrial activity high importance in the regulation of brain physiology and conceivable relevance as therapeutic target.
Journal of Neurochemistry | 2005
Marlene M. Hsieh; George Lupas; Jennifer L. Rychlik; Suzan Dziennis; Beth A. Habecker; Elaine J. Lewis
The homeodomain protein Arix/Phox2a plays a role in the development and maintenance of the noradrenergic cell type by regulating the transcription of genes involved in the biosynthesis and metabolism of noradrenaline. Previous work has shown that Arix/Phox2a is a phosphoprotein, and the phosphorylated form of Arix/Phox2a exhibits poorer DNA‐binding activity than does the dephosphorylated form. Here, we demonstrate that Arix/Phox2a is phosphorylated by extracellular signal‐related kinase (ERK)1/2 at two sites within the N‐terminal transactivation domain. The phosphorylation level of Arix in cultured SH‐SY5Y neuroblastoma cells is reduced when cells are treated with the mitogen activated protein kinase kinase 1 (MEK1) inhibitor UO126. Treatment of sympathetic neurons with the MEK1 inhibitor, PD98059, results in an elevation of mRNAs encoding noradrenergic proteins, dopamine ß‐hydroxylase (DBH) and norepinephrine transporter (NET), but not tyrosine hydroyxlase (TH). Treatment of neuroblastoma cultures with PD98059 increases the interaction of Arix with DBH and NET genes, but not the TH gene. Together, these results suggest that phosphorylation of Arix by ERK1/2 inhibits its ability to interact with target genes, and that both specificity of expression and modulation by external stimuli are monitored through the same transcription factor.
Neuroreport | 2004
Suzan Dziennis; Beth A. Habecker
The cholinergic differentiation factor ciliary neurotrophic factor (CNTF) suppresses noradrenergic properties while inducing cholinergic and peptidergic properties in sympathetic neurons. In the rat, this includes suppression of the noradrenergic enzymes tyrosine hydroxylase and dopamine &bgr;-hydroxylase. Lower enzyme levels result in part from suppression of gene transcription, but the mechanisms are unknown. We found that ciliary neurotrophic factor decreased the transcriptional activator Phox2a in neuroblastoma cells and cultured sympathetic neurons, suggesting that the loss of Phox2a is part of the mechanism by which CNTF suppresses tyrosine hydroxylase and dopamine &bgr;-hydroxylase. Consistent with this model, Phox2a is suppressed in rat cholinergic sympathetic neurons where noradrenergic enzymes decrease, but is not altered in mouse cholinergic neurons where these enzymes remain high.