Suzana Atanasoski
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suzana Atanasoski.
Molecular and Cellular Neuroscience | 2003
Dino P. Leone; S.téphane Genoud; Suzana Atanasoski; Reinhard Grausenburger; Philipp Berger; Daniel Metzger; Wendy B. Macklin; Pierre Chambon; Ueli Suter
Inducible transgenesis provides a valuable technique for the analysis of gene function in vivo. We report the generation and characterization of mouse lines carrying glia lineage-specific transgenes expressing an improved variant of the tamoxifen-inducible Cre recombinase, CreERT2, where the recombinase is fused to a mutated ligand binding domain of the human estrogen receptor. Using a PLP-CreERT2 transgene, we have generated mice that show specific inducible Cre function, as analyzed by cross-breeding experiments into the Rosa26 Cre-LacZ reporter line, in developing and adult Schwann cells, in mature myelinating oligodendrocytes, and in undifferentiated NG2-positive oligodendrocyte precursors in the adult. Using a P0Cx-CreERT2 transgene, we have also established mouse lines with inducible Cre function specifically in the Schwann cell lineage. These tamoxifen-inducible CreERT2 lines will allow detailed spatiotemporally controlled analysis of gene functions in loxP-based conditional mutant mice in both developing and adult Schwann cells and in the oligodendrocyte lineage.
The Journal of Neuroscience | 2006
Suzana Atanasoski; Steven S. Scherer; Erich E. Sirkowski; Dino P. Leone; Alistair N. Garratt; Carmen Birchmeier; Ueli Suter
Neuregulin/erbB signaling is critically required for survival and proliferation of Schwann cells as well as for establishing correct myelin thickness of peripheral nerves during development. In this study, we investigated whether erbB2 signaling in Schwann cells is also essential for the maintenance of myelinated peripheral nerves and for Schwann cell proliferation and survival after nerve injury. To this end, we used inducible Cre-loxP technology using a PLP-CreERT2 allele to ablate erbB2 in adult Schwann cells. ErbB2 expression was markedly reduced after induction of erbB2 gene disruption with no apparent effect on the maintenance of already established myelinated peripheral nerves. In contrast to development, Schwann cell proliferation and survival were not impaired in mutant animals after nerve injury, despite reduced levels of MAPK-P (phosphorylated mitogen-activated protein kinase) and cyclin D1. ErbB1 and erbB4 do not compensate for the loss of erbB2. We conclude that adult Schwann cells do not require major neuregulin signaling through erbB2 for proliferation and survival after nerve injury, in contrast to development and in cell culture.
The Journal of Neuroscience | 2013
Dimitri Cloëtta; Venus Thomanetz; Constanze Baranek; Regula M. Lustenberger; Shuo Lin; Filippo Oliveri; Suzana Atanasoski; Markus A. Rüegg
The mammalian target of rapamycin (mTOR) regulates cell growth in response to various intracellular and extracellular signals. It assembles into two multiprotein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-insensitive mTORC2. In this study, we inactivated mTORC1 in mice by deleting the gene encoding raptor in the progenitors of the developing CNS. Mice are born but never feed and die within a few hours. The brains deficient for raptor show a microcephaly starting at E17.5 that is the consequence of a reduced cell number and cell size. Changes in cell cycle length during late cortical development and increased cell death both contribute to the reduction in cell number. Neurospheres derived from raptor-deficient brains are smaller, and differentiation of neural progenitors into glia but not into neurons is inhibited. The differentiation defect is paralleled by decreased Stat3 signaling, which is a target of mTORC1 and has been implicated in gliogenesis. Together, our results show that postnatal survival, overall brain growth, and specific aspects of brain development critically depend on mTORC1 function.
Molecular and Cellular Neuroscience | 2001
Suzana Atanasoski; Susan Shumas; Clive Dickson; Steven S. Scherer; Ueli Suter
Neurons regulate Schwann cell proliferation, but little is known about the molecular basis of this interaction. We have examined the possibility that cyclin D1 is a key regulator of the cell cycle in Schwann cells. Myelinating Schwann cells express cyclin D1 in the perinuclear region, but after axons are severed, cyclin D1 is strongly upregulated in parallel with Schwann cell proliferation and translocates into Schwann cell nuclei. During development, cyclin D1 expression is confined to the perinuclear region of proliferating Schwann cells and the analysis of cyclin D1-null mice indicates that cyclin D1 is not required for this type of Schwann cell proliferation. As in the adult, injury to immature peripheral nerves leads to translocation of cyclin D1 to Schwann cell nuclei and injury-induced proliferation is impaired in both immature and mature cyclin D1-deficient Schwann cells. Thus, our data indicate that the molecular mechanisms regulating proliferation of Schwann cells during development or activated by axonal damage are fundamentally different.
Neuron | 2004
Suzana Atanasoski; Lucia Notterpek; Hye Youn Lee; François Castagner; Peter Young; Markus U. Ehrengruber; Dies Meijer; Lukas Sommer; Ed Stavnezer; Clemencia Colmenares; Ueli Suter
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Constanze Baranek; Manuela Dittrich; Srinivas Parthasarathy; Carine Bonnon; Olga Britanova; Dmitriy Lanshakov; Fatiha Boukhtouche; Julia E. Sommer; Clemencia Colmenares; Victor Tarabykin; Suzana Atanasoski
First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski–Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.
Journal of Neuroscience Research | 2002
Suzana Atanasoski; Steven S. Scherer; Klaus-Armin Nave; Ueli Suter
Overexpression of PMP22 is responsible for the most common form of inherited neuropathy, Charcot‐Marie‐Tooth disease (CMT) type 1A. The PMP22‐transgenic rat (CMT rat) is an animal model of CMT1A, and its peripheral nerves show the characteristic features of ongoing demyelination and remyelination that is also seen in CMT1A patients. Since Schwann cell proliferation is a prominent feature of peripheral nerves in inherited peripheral neuropathies, we examined proliferation and the expression of cyclin D1 in CMT rats. D‐type cyclins are required for the initial steps in cell division and nuclear import is crucial for the function of cyclin D1 in promoting cell proliferation. Like normal myelinating Schwann cells in wild‐type rats, remyelinating Schwann cells in CMT rats show perinuclear cyclin D1 expression. Schwann cells with nuclear cyclin D1 expression, as well as proliferating Schwann cells, were both associated with demyelinated axonal segments. Supernumerary onion bulb Schwann cells, however, do not express cyclin D1 and were not proliferating. Thus, cyclin D1 expression and its subcellular localization correlate directly with distinct physiological states of Schwann cells in this animal model of CMT1A.
Glia | 2006
Suzana Atanasoski; Danielle Boller; Lukas De Ventura; Heidi Koegel; Matthias Boentert; Peter Young; Sabine Werner; Ueli Suter
Regulated cell proliferation is a crucial prerequisite for Schwann cells to achieve myelination in development and regeneration. In the present study, we have investigated the function of the cell cycle inhibitors p21 and p16 as potential regulators of Schwann cell proliferation, using p21‐ or p16‐deficient mice. We report that both inhibitors are required for proper withdrawal of Schwann cells from the cell cycle during development and following injury. Postnatal Schwann cells express p21 exclusively in the cytoplasm, first detectable at postnatal day 7. This cytoplasmic p21 expression is necessary for proper Schwann cell proliferation control in the late development of peripheral nerves. After axonal damage, p21 is found in Schwann cell nuclei during the initiation of the proliferation period. This stage is critically regulated by p21, since loss of p21 leads to a strong increase in Schwann cell proliferation. Unexpectedly, p21 levels are upregulated in this phase suggesting that the role of p21 may be more complex than purely inhibitory for the Schwann cell cycle. However, inhibition of Schwann cell proliferation is the overriding crucial function of p21 and p16 in peripheral nerves as revealed by the consequences of loss‐of‐function in development and after injury. Different mechanisms appear to underlie the inhibitory function, depending on whether p21 is cytoplasmic or nuclear.
Cell and Tissue Research | 2012
Carine Bonnon; Suzana Atanasoski
Abstractc-Ski is an evolutionary conserved protein that is involved in diverse cellular processes such as proliferation, differentiation, transformation, and tumor progression. A large range of cellular partners of c-Ski, including transcription factors, chromatin-remodeling molecules, tumor suppressors, and nuclear hormone receptors, has been identified. Moreover, numerous mechanisms have been described by which c-Ski regulates essential signaling pathways, e.g., the TGFβ pathway. In this review, we summarize the diverse roles attributed to c-Ski during normal development and in cancer progression and discuss future strategies to unravel further the complex nature of c-Ski actions in a context-dependent manner.
Journal of Neurochemistry | 2002
Marcus Frank; Suzana Atanasoski; Josef P. Magyar; Thomas Rülicke; Martin E. Schwab; Ueli Suter
Abstract: Myelin and lymphocyte protein (MAL) is a putative tetraspan proteolipid that is highly expressed by Schwann cells and oligodendrocytes as a component of compact myelin. Outside of the nervous system, MAL is found in apical membranes of epithelial cells, mainly in the kidney and stomach. Because MAL is associated with glycosphingolipids, it is thought to be involved in the organization, transport, and maintenance of glycosphingolipid‐enriched membrane microdomains. In this report, we describe the generation and analysis of transgenic mice with increased MAL gene dosage. Immunohistochemical analysis revealed that the localization of MAL overexpression in the transgenic animals corresponded closely to the MAL expression pattern observed in wildtype animals, indicating correct spatial regulation of the transgene. Phenotypically, MAL overexpression led to progressive dissociation of unmyelinated axons from bundles in the PNS, a tendency to hypomyelination and aberrant myelin formation in the CNS, and the formation of large cysts in the tubular region of the kidney. Thus, increased expression of MAL appears to be deleterious to membranous structures in the affected tissues, indicating a requirement for tight control of endogenous MAL expression in Schwann cells, oligodendrocytes, and kidney epithelial cells.