Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzana Gispert is active.

Publication


Featured researches published by Suzana Gispert.


Nature Genetics | 1996

Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2

Stefan M. Pulst; Alex Nechiporuk; Tamilla Nechiporuk; Suzana Gispert; Xiao Ning Chen; I. Lopes-Cendes; Susan Pearlman; Sidney Starkman; Guillermo Orozco-Diaz; Astrid Lunkes; Pieter J. deJong; Guy A. Rouleau; Georg Auburger; Julie R. Korenberg; Carla P. Figueroa; Soodabeh Sahba

The gene for spinocerebellar ataxia type 2 (SCA2) has been mapped to 12q24.1. A1.1–megabase contig in the candidate region was assembled in P1 artificial chromosome and bacterial artificial chromosome clones. Using this contig, we identified a CAG trinucleotide repeat with CAA interruptions that was expanded in patients with SCA2. In contrast to other unstable trinucleotide repeats, this CAG repeat was not highly polymorphic in normal individuals. In SCA2 patients, the repeat was perfect and expanded to 36–52 repeats. The most common disease allele contained (CAG)37, one of the shortest expansions seen in a CAG expansion syndrome. The repeat occurs in the 5′–coding region of SCA2 which is a member of a novel gene family.


The Journal of Neuroscience | 2007

Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin

Nicole Exner; Bettina Treske; Dominik Paquet; Kira M. Holmström; Carola Schiesling; Suzana Gispert; Iria Carballo-Carbajal; Daniela Berg; Hans-Hermann Hoepken; Thomas Gasser; Rejko Krüger; Konstanze F. Winklhofer; Frank Vogel; Andreas S. Reichert; Georg Auburger; Philipp J. Kahle; Bettina Schmid; Christian Haass

Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinsons disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recent evidence points to a number of genes involved in familial variants of PD. Among them, a loss-of-function of phosphatase and tensin homolog-induced kinase 1 (PINK1; PARK6) is associated with rare cases of autosomal recessive parkinsonism. In HeLa cells, RNA interference-mediated downregulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Morphological changes of mitochondria can be rescued by expression of wild-type PINK1 but not by PD-associated PINK1 mutants. Moreover, primary cells derived from patients with two different PINK1 mutants showed a similar defect in mitochondrial morphology. Human parkin but not PD-associated mutants could rescue mitochondrial pathology in human cells like wild-type PINK1. Our results may therefore suggest that PINK1 deficiency in humans results in mitochondrial abnormalities associated with cellular stress, a pathological phenotype, which can be ameliorated by enhanced expression of parkin.


PLOS ONE | 2009

Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration

Suzana Gispert; Filomena Ricciardi; Alexander Kurz; Mekhman Azizov; Hans-Hermann Hoepken; Dorothea Becker; Wolfgang Voos; Kristina Leuner; Walter E. Müller; Alexei P. Kudin; Wolfram S. Kunz; Annabelle Zimmermann; Jochen Roeper; Dirk Wenzel; Marina Jendrach; Moisés García-Arencibia; Javier Fernández-Ruiz; Leslie Huber; Hermann Rohrer; Miguel Barrera; Andreas S. Reichert; Udo Rüb; Amy Chen; Robert L. Nussbaum; Georg Auburger

Background Parkinsons disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.


Neurobiology of Disease | 2007

Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6

Hans-Hermann Hoepken; Suzana Gispert; Blas Morales; Oliver Wingerter; Domenico Del Turco; Alexander Mülsch; Robert L. Nussbaum; Klaus Müller; Stefan Dröse; Ulrich Brandt; Thomas Deller; Brunhilde Wirth; Alexei P. Kudin; Wolfram S. Kunz; Georg Auburger

Oxidative stress and protein aggregation are biochemical hallmarks of Parkinsons disease (PD), a frequent sporadic late-onset degenerative disorder particularly of dopaminergic neurons in the substantia nigra, resulting in impaired spontaneous movement. PARK6 is a rare autosomal-recessively inherited disorder, mimicking the clinical picture of PD with earlier onset and slower progression. Genetic data demonstrated PARK6 to be caused by mutations in the protein PINK1, which is localized to mitochondria and has a serine-threonine kinase domain. To study the effect of PINK1 mutations on oxidative stress, we used primary fibroblasts and immortalized lymphoblasts from three patients homozygous for G309D-PINK1. Oxidative stress was evident from increases in lipid peroxidation and in antioxidant defenses by mitochondrial superoxide dismutase and glutathione. Elevated levels of glutathione reductase and glutathione-S-transferase were also observed. As a putative cause of oxidation, a mild decrease in complex I activity and a trend to superoxide elevation were detectable. These data indicate that PINK1 function is critical to prevent oxidative damage and that peripheral cells may be useful for studies of progression and therapy of PARK6.


Molecular and Cellular Neuroscience | 2003

Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation

Suzana Gispert; Domenico Del Turco; Lisa Garrett; Amy Chen; David J. Bernard; John Hamm-Clement; Horst-Werner Korf; Thomas Deller; Heiko Braak; Georg Auburger; Robert L. Nussbaum

Alpha-synuclein was implicated in Parkinsons disease when missense mutations in the alpha-synuclein gene were found in autosomal dominant Parkinsons disease and alpha-synuclein was shown to be a major constituent of protein aggregates in sporadic Parkinsons disease and other synucleinopathies. We have generated transgenic mice expressing A53T mutant and wild-type human alpha-synuclein. The mutant transgenic protein was distributed abnormally to the axons, perikarya, and dendrites of neurons in many brain areas. In electron microscopic immunogold studies, no aggregation of alpha-synuclein was found in these mice. However, behavior analysis showed a progressive reduction of spontaneous vertical motor activity in both mutant lines correlating with the dosage of overexpression. In addition, deficits of grip strength, rotarod performance, and gait were observed in homozygous PrPmtB mice. Transgenic animals expressing mutant alpha-synuclein may be a valuable model to assess specific aspects of the pathogenesis of synucleinopathies.


Human Molecular Genetics | 2011

Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients

Teresa Lee; Yun R. Li; Caroline Ingre; Markus Weber; Torsten Grehl; Ole Gredal; Mamede de Carvalho; Thomas Meyer; Ole-Bjørn Tysnes; Georg Auburger; Suzana Gispert; Nancy M. Bonini; Peter Andersen; Aaron D. Gitler

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease primarily affecting motor neurons. We recently identified intermediate-length polyglutamine (polyQ) expansions (27-33 Qs) in ataxin 2 as a genetic risk factor for sporadic ALS in North American ALS patients. To extend these findings, we assessed the ataxin 2 polyQ repeat length in 1294 European ALS patients and 679 matched healthy controls. We observed a significant association between polyQ expansions and ALS (>30 Qs; P= 6.2 × 10(-3)). Thus, intermediate-length ataxin 2 polyQ repeat expansions are associated with increased risk for ALS also in the European cohort. The specific polyQ length cutoff, however, appears to vary between different populations, with longer repeat lengths showing a clear association. Our findings support the hypothesis that ataxin 2 plays an important role in predisposing to ALS and that polyQ expansions in ataxin 2 are a significant risk factor for the disease.


Neurology | 2012

Large-scale replication and heterogeneity in Parkinson disease genetic loci

Manu Sharma; John P. A. Ioannidis; Jan O. Aasly; Grazia Annesi; Alexis Brice; Christine Van Broeckhoven; Lars Bertram; Maria Bozi; David Crosiers; Carl E Clarke; Maurizio F. Facheris; Matthew J. Farrer; Gaëtan Garraux; Suzana Gispert; Georg Auburger; Carles Vilariño-Güell; Georgios M. Hadjigeorgiou; Andrew A. Hicks; Nobutaka Hattori; Beom S. Jeon; Suzanne Lesage; Christina M. Lill; Juei Jueng Lin; Timothy Lynch; Peter Lichtner; Anthony E. Lang; Vincent Mok; Barbara Jasinska-Myga; George D. Mellick; Karen E. Morrison

Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Methods: Investigators from the Genetic Epidemiology of Parkinsons Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Conclusion: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667


PLOS ONE | 2010

A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice

Alexander Kurz; Kay L. Double; Isabel Lastres-Becker; Alessandro Tozzi; Michela Tantucci; Vanessa Bockhart; Michael Bonin; Moisés García-Arencibia; Silke Nuber; Falk Schlaudraff; Birgit Liss; Javier Fernández-Ruiz; Manfred Gerlach; Ullrich Wüllner; Hartmut Lüddens; Paolo Calabresi; Georg Auburger; Suzana Gispert

Background Parkinsons disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Methodology/Principal Findings Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. Conclusions/Significance Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.


Neurogenetics | 1997

SCA2 trinucleotide expansion in German SCA patients

Olaf Riess; Franco Laccone; Suzana Gispert; Ludger Schöls; Christine Zühlke; Ana Maria Menezes Vieira-Saecker; Susanne Herlt; Karl Wessel; Jörg T. Epplen; Bernhard H. F. Weber; Friedmar Kreuz; Soheyla Chahrokh-Zadeh; Alfons Meindl; Astrid Lunkes; Jorge Aguiar; Milan Macek; Alice Krebsova; Milan Macek Sen; Katrin Bürk; Sigrid Tinschert; Isolde Schreyer; Stefan-M. Pulst; Georg Auburger

ABSTRACTAutosomal dominant spinocerebellar ataxias (SCA) are a group of clinically and genetically heterogeneous neurodegenerative disorders which lead to progressive cerebellar ataxia. A gene responsible for SCA type 2 has been mapped to human chromosome 12 and the disease causing mutation has been identified as an unstable and expanded (CAG)n trinucleotide repeat. We investigated the (CAG)n repeat length of the SCA2 gene in 842 patients with sporadic ataxia and in 96 German families with dominantly inherited SCA which do not harbor the SCA1 or MJD1/SCA3 mutation, respectively. The SCA2 (CAG)n expansion was identified in 71 patients from 54 families. The (CAG)n stretch of the affected allele varied between 36 and 64 trinucleotide units. Significant repeat expansions occurred most commonly during paternal transmission. Analysis of the (CAG)n repeat lengths with the age of onset in 41 patients revealed an inverse correlation. Two hundred and forty-one apparently healthy octogenerians carried alleles between 16 and 31 repeats. One 50-year old, healthy individual had 34 repeats; she had transmitted an expanded allele to her child. The small difference between ‘normal’ and disease alleles makes it necessary to define the extreme values of their ranges. With one exception, the trinucleotide expansion was not observed in 842 ataxia patients without a family history of the disease. The SCA2 mutation causes the disease in nearly 14% of autosomal dominant SCA in Germany.


Annals of Neurology | 2011

Independent and joint effects of the MAPT and SNCA genes in Parkinson disease.

Alexis Elbaz; Owen A. Ross; John P. A. Ioannidis; Alexandra I. Soto-Ortolaza; Frédéric Moisan; Jan O. Aasly; Grazia Annesi; Maria Bozi; Laura Brighina; Marie Christine Chartier-Harlin; Alain Destée; Carlo Ferrarese; Alessandro Ferraris; J. Mark Gibson; Suzana Gispert; Georgios M. Hadjigeorgiou; Barbara Jasinska-Myga; Christine Klein; Rejko Krüger; Jean Charles Lambert; Katja Lohmann; Simone van de Loo; Marie-Anne Loriot; Timothy Lynch; George D. Mellick; Eugénie Mutez; Christer Nilsson; Grzegorz Opala; Andreas Puschmann; Aldo Quattrone

We studied the independent and joint effects of the genes encoding alpha‐synuclein (SNCA) and microtubule‐associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta‐analysis of individual data from case–control studies participating in the Genetic Epidemiology of Parkinsons Disease (GEO‐PD) consortium.

Collaboration


Dive into the Suzana Gispert's collaboration.

Top Co-Authors

Avatar

Georg Auburger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Jendrach

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Riess

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Alexander Kurz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Nadine Brehm

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Rejko Krüger

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Astrid Lunkes

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ewa Damrath

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge