Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne A. Eccles is active.

Publication


Featured researches published by Suzanne A. Eccles.


British Journal of Cancer | 2010

Guidelines for the welfare and use of animals in cancer research

Paul Workman; Eric O. Aboagye; Frances R. Balkwill; A Balmain; G Bruder; D.J. Chaplin; J A Double; Jeffrey I. Everitt; D A H Farningham; Martin J. Glennie; L R Kelland; V Robinson; Ian J. Stratford; Gillian M. Tozer; Sue Watson; Stephen R. Wedge; Suzanne A. Eccles; V Navaratnam; S Ryder

Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.


Journal of Medicinal Chemistry | 2008

The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer

Adrian Folkes; Khatereh Ahmadi; Wendy K. Alderton; Sonia Alix; Stewart Baker; Gary Box; Irina Chuckowree; Paul A. Clarke; Paul Depledge; Suzanne A. Eccles; Lori S. Friedman; Angela Hayes; Timothy C. Hancox; Arumugam Kugendradas; Letitia Lensun; Pauline Moore; Alan G. Olivero; Jodie Pang; Sonal Patel; Giles Pergl-Wilson; Florence I. Raynaud; Anthony Robson; Nahid Saghir; Laurent Salphati; Sukhjit Sohal; Mark Ultsch; Melanie Valenti; Heidi J.A. Wallweber; Nan Chi Wan; Christian Wiesmann

Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.


The Lancet | 2007

Metastasis: recent discoveries and novel treatment strategies

Suzanne A. Eccles; Danny R. Welch

Most cancer deaths are due to the development of metastases, hence the most important improvements in morbidity and mortality will result from prevention (or elimination) of such disseminated disease. Some would argue that treatments directed against metastasis are too late because cells have already escaped from the primary tumour. Such an assertion runs contrary to the significant but (for many common adult cancers) fairly modest improvements in survival following the use of adjuvant radiation and chemotherapy designed to eliminate disseminated cells after surgical removal of the primary tumour. Nonetheless, the debate raises important issues concerning the accurate early identification of clonogenic, metastatic cells, the discovery of novel, tractable targets for therapy, and the monitoring of minimal residual disease. We focus on recent findings regarding intrinsic and extrinsic molecular mechanisms controlling metastasis that determine how, when, and where cancers metastasise, and their implications for patient management in the 21st century.


BMC Biology | 2012

Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation

Maria Vinci; Sharon Gowan; Frances E. Boxall; Lisa Patterson; Miriam Zimmermann; William Court; Cara Lomas; Marta Mendiola; David Hardisson; Suzanne A. Eccles

BackgroundThere is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed.ResultsTo address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor), 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) (heat shock protein 90 (HSP90) inhibitor) and CCT130234 (in-house phospholipase C (PLC)γ inhibitor). Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration/invasion compared with proliferation, suggesting their preferential utility in metastatic disease.ConclusionsWe have established and validated a suite of highly reproducible tumor microplate three-dimensional functional assays to enhance the biological relevance of early preclinical cancer studies. We believe these assays will increase the translational predictive value of in vitro drug evaluation studies and reduce the need for in vivo studies by more effective triaging of compounds.


Cancer Research | 2008

NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis

Suzanne A. Eccles; Andrew Massey; Florence I. Raynaud; Swee Y. Sharp; Gary Box; Melanie Valenti; Lisa Patterson; Alexis de Haven Brandon; Sharon Gowan; Frances E. Boxall; Wynne Aherne; Martin G. Rowlands; Angela Hayes; Vanessa Martins; Frederique Urban; Kathy Boxall; Chrisostomos Prodromou; Laurence H. Pearl; Karen B. James; Thomas P. Matthews; Kwai-Ming Cheung; Andrew Kalusa; Keith Jones; Edward McDonald; Xavier Barril; Paul Brough; Julie E. Cansfield; Brian W. Dymock; Martin J. Drysdale; Harry Finch

We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials.


Cancer Research | 2007

Pharmacologic Characterization of a Potent Inhibitor of Class I Phosphatidylinositide 3-Kinases

Florence I. Raynaud; Suzanne A. Eccles; Paul A. Clarke; Angela Hayes; Bernard Nutley; Sonia Alix; Alan T. Henley; Zahida Ahmad; Sandrine Guillard; Lynn Bjerke; Lloyd R. Kelland; Melanie Valenti; Lisa Patterson; Sharon Gowan; Alexis de Haven Brandon; Masahiko Hayakawa; Hiroyuki Kaizawa; Tomonubu Koizumi; Takahide Ohishi; Sonal Patel; Nahid Saghir; Peter J. Parker; M D Waterfield; Paul Workman

Extensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K. PI103 is a potent inhibitor with low IC50 values against recombinant PI3K isoforms p110alpha (2 nmol/L), p110beta (3 nmol/L), p110delta (3 nmol/L), and p110gamma (15 nmol/L). PI103 also inhibited TORC1 by 83.9% at 0.5 micromol/L and exhibited an IC50 of 14 nmol/L against DNA-PK. A high degree of selectivity for the PI3K family was shown by the lack of activity of PI103 in a panel of 70 protein kinases. PI103 potently inhibited proliferation and invasion of a wide variety of human cancer cells in vitro and showed biomarker modulation consistent with inhibition of PI3K signaling. PI103 was extensively metabolized, but distributed rapidly to tissues and tumors. This resulted in tumor growth delay in eight different human cancer xenograft models with various PI3K pathway abnormalities. Decreased phosphorylation of AKT was observed in U87MG gliomas, consistent with drug levels achieved. We also showed inhibition of invasion in orthotopic breast and ovarian cancer xenograft models and obtained evidence that PI103 has antiangiogenic potential. Despite its rapid in vivo metabolism, PI103 is a valuable tool compound for exploring the biological function of class I PI3K and importantly represents a lead for further optimization of this novel class of targeted molecular cancer therapeutic.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


Oral Oncology | 2003

Tumour thickness predicts cervical nodal metastases and survival in early oral tongue cancer

Pornchai O-charoenrat; G Pillai; S Patel; Cyril Fisher; Daniel J. Archer; Suzanne A. Eccles; Peter Rhys-Evans

Squamous cell carcinoma (SCC) of the oral tongue is characterized by a high propensity for cervical nodal metastasis, which affects the probability of regional control and survival. Until now, elective treatment of the clinically negative neck in early lesions (T(1-2)) of the oral tongue cancer remains controversial. This study attempted to identify predictive factor(s) for cervical nodal metastasis and treatment outcomes in patients with early stage SCC of the oral tongue treated primarily by surgery. Fifty patients with previously untreated Stage I/II primary tongue carcinomas with available archival specimens treated at the Royal Marsden Hospital between 1981 and 1998 were reviewed. Clinico-pathological features including age, gender, alcohol and tobacco consumption, tumour location, histological grade, tumour-stromal border, growth pattern, tumour thickness, and clinical stage were evaluated and the correlations with cervical metastases and outcome analysis were determined. The overall occult nodal metastatic rate was 40% (20/50). Tumour thickness exceeding 5 mm was statistically significantly correlated with cervical metastases (P = 0.003; relative risk = 2.429). No statistical correlation was observed between other clinico-pathological parameters and nodal metastasis. With a median follow-up of 98 months, 5-year actuarial overall, disease-specific (DSS), and relapse-free survival were 65.71, 67.77, and 68.18%, respectively. Univariate analysis for DSS showed poorer outcomes for patients with age > 60 years (P = 0.0423) and tumour thickness > 5 mm (P = 0.0067). The effect of tumour thickness was maintained (P = 0.005) on multivariate analysis. The present study indicates that the thickness of primary tumour has a strong predictive value for occult cervical metastasis and poor outcomes in patients with Stage I/II oral tongue SCC. Thus, elective neck treatment (surgery or irradiation) is indicated for tumours exceeding 5 mm thickness.


Molecular Cancer Therapeutics | 2009

Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941

Florence I. Raynaud; Suzanne A. Eccles; Sonal Patel; Sonia Alix; Gary Box; Irina Chuckowree; Adrian Folkes; Sharon Gowan; Alexis de Haven Brandon; Francesca Di Stefano; Angela Hayes; Alan T. Henley; Letitia Lensun; Giles Pergl-Wilson; Anthony Robson; Nahid Saghir; Alexander Zhyvoloup; Edward McDonald; Peter Sheldrake; Stephen J. Shuttleworth; Melanie Valenti; Nan Chi Wan; Paul A. Clarke; Paul Workman

The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110α with IC50 ≤ 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials. [Mol Cancer Ther 2009;8(7):1725–38] [Mol Cancer Ther 2009;8(7):1725–38]


Tumori | 2004

Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis.

Sharon Brader; Suzanne A. Eccles

Aims and background The PI3 kinase signalling pathway is now accepted as being at least as important as the ras-MAP kinase pathway in cell survival and proliferation, and hence its potential role in cancer is of great interest1. The purpose of this review is briefly to examine evidence for an involvement of PI3K in human cancers, discuss the mechanisms by which its activation promotes tumor progression, and consider its utility as a novel target for anticancer therapy. Methods and study design A Medline review of recent literature concerning the role of PI3 kinase in tumor progression -mechanisms of action and clinical implications. Results Evidence is presented that misregulation of the PI3 kinase pathway is a feature of many common cancers, either by loss of the suppressor protein PTEN, or by constitutive activation of PI3 kinase isoforms or downstream elements such as AKT and mTOR. This activation potentiates not only cell survival and proliferation, but also cytoskeletal deformability and motility; key elements in tumor invasion. In addition the PI3K pathway is implicated in many aspects of angiogenesis, including upregulation of angiogenic cytokines due to tumor hypoxia or oncogene activation and endothelial cell responses to them. These cytokines signal though receptors such as VEGF-R, FGF-R and Tie-2 and potentiate processes essential for neoangiogenesis including cell proliferation, migration, differentiation into tubules and “invasion” of these capillary sprouts into extracellular matrix (ECM). Conclusions A more complete understanding of the role of the PI3 kinase pathway in cancer will lead the way to the development of more potent and selective inhibitors which should be a useful adjunct to conventional therapies, potentially interfering with tumor progression at several pivotal points; in particular cell survival, invasion and angiogenesis.

Collaboration


Dive into the Suzanne A. Eccles's collaboration.

Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Gary Box

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Melanie Valenti

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Hayes

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Carol Box

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Julian Blagg

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Dean

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul A. Clarke

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge