Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne D. Johanningsmeier is active.

Publication


Featured researches published by Suzanne D. Johanningsmeier.


Applied and Environmental Microbiology | 2012

Characteristics of Spoilage-Associated Secondary Cucumber Fermentation

Wendy Franco; Ilenys M. Pérez-Díaz; Suzanne D. Johanningsmeier; Roger F. McFeeters

ABSTRACT Secondary fermentations during the bulk storage of fermented cucumbers can result in spoilage that causes a total loss of the fermented product, at an estimated cost of


Journal of Food Science | 2012

Influence of Sodium Chloride, pH, and Lactic Acid Bacteria on Anaerobic Lactic Acid Utilization during Fermented Cucumber Spoilage

Suzanne D. Johanningsmeier; Wendy Franco; Ilenys M. Pérez-Díaz; Roger F. McFeeters

6,000 to


Food Microbiology | 2013

Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations ☆

Suzanne D. Johanningsmeier; Roger F. McFeeters

15,000 per affected tank. Previous research has suggested that such fermentations are the result of microbiological utilization of lactic acid and the formation of acetic, butyric, and propionic acids. The objectives of this study were to characterize the chemical and environmental conditions associated with secondary cucumber fermentations and to isolate and characterize potential causative microorganisms. Both commercial spoilage samples and laboratory-reproduced secondary fermentations were evaluated. Potential causative agents were isolated based on morphological characteristics. Two yeasts, Pichia manshurica and Issatchenkia occidentalis, were identified and detected most commonly concomitantly with lactic acid utilization. In the presence of oxygen, yeast metabolic activities lead to lactic acid degradation, a small decline in the redox potential (Eh, Ag/AgCl, 3 M KCl) of the fermentation brines, and an increase in pH to levels at which bacteria other than the lactic acid bacteria responsible for the primary fermentation can grow and produce acetic, butyric, and propionic acids. Inhibition of these yeasts by allyl isothiocyanate (AITC) resulted in stabilization of the fermented medium, while the absence of the preservative resulted in the disappearance of lactic and acetic acids in a model system. Additionally, three Gram-positive bacteria, Lactobacillus buchneri, a Clostridium sp., and Pediococcus ethanolidurans, were identified as potentially relevant to different stages of the secondary fermentation. The unique opportunity to study commercial spoilage samples generated a better understanding of the microbiota and environmental conditions associated with secondary cucumber fermentations.


Journal of Food Science | 2009

Effects of pH Adjustment and Sodium Ions on Sour Taste Intensity of Organic Acids

E. R. D. Neta; Suzanne D. Johanningsmeier; M.A. Drake; Roger F. McFeeters

UNLABELLED Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. PRACTICAL APPLICATION Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded by spoilage microorganisms in reduced salt, even with pH as low as 3.2. Efforts to reduce salt in commercial brining operations will need to include control measures for this increased susceptibility to spoilage. Lactobacillus buchneri was identified as a potential causative agent and could be used as a target in development of such control measures.


International Journal of Food Microbiology | 2015

Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

Suzanne D. Johanningsmeier; Roger F. McFeeters

Recent evidence suggests that Lactobacillus buchneri may play an important role in spoilage-associated secondary fermentation of cucumbers. Lactic acid degradation during fermented cucumber spoilage is influenced by sodium chloride (NaCl) concentration, pH, and presence of oxygen. Objectives were to evaluate these factors on lactic acid utilization by L. buchneri, and to compare the biochemical changes to those which occur during fermented cucumber spoilage. Effects of NaCl (0, 2, 4, and 6% w/w), pH (3.8 vs 5.0), and aerobic environment were investigated using fermented cucumber media (FC) inoculated with spoilage microorganisms. At pH 3.8, L. buchneri degraded lactic acid in all NaCl concentrations. The highest rate of lactic acid utilization occurred in FC with 2% NaCl (P < 0.05). Lactic acid utilization was nearly identical under aerobic and anaerobic conditions, indicating that oxygen does not influence lactate metabolism by L. buchneri. Lactic acid utilization was accompanied by increases in acetic acid and 1,2-propanediol, and Lactobacillus rapi was able to convert 1,2-propanediol to propionic acid and propanol. L. buchneri initiated spoilage in a wide range of environmental conditions that may be present in commercial cucumber fermentations, and L. rapi may act syntrophically with L. buchneri to produce the commonly observed spoilage metabolites.


Journal of Food Science | 2013

Characterization of Cucumber Fermentation Spoilage Bacteria by Enrichment Culture and 16S rDNA Cloning

Fred Breidt; Eduardo Medina; Doria Wafa; Ilenys M. Pérez-Díaz; Wendy Franco; Hsin-Yu Huang; Suzanne D. Johanningsmeier; Jae Ho Kim

Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.


Journal of Agricultural and Food Chemistry | 2016

Development and Validation of a Near-Infrared Spectroscopy Method for the Prediction of Acrylamide Content in French-Fried Potato

Oluwatosin E. Adedipe; Suzanne D. Johanningsmeier; Van-Den Truong; G. Craig Yencho

Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage and the unique metabolic capabilities of L. buchneri. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry metabolite profiling methods were applied for nontargeted detection of volatile and nonvolatile compounds to determine changes that occurred during anaerobic fermented cucumber spoilage by L. buchneri LA1147 and during reproduction of spoilage with natural microbiota. Univariate analysis of variance combined with hierarchial clustering analysis revealed 92 metabolites that changed during spoilage (P<0.01). Decreases were observed in mono and disaccharides, amino acids, nucleosides, long chain fatty acids, aldehydes, and ketones, and increases were observed in several alcohols and butanoic and pentanoic acids. Most of the metabolite changes preceded lactic acid utilization, indicating that lactic acid is not a preferred substrate for anaerobic spoilage organisms in fermented cucumbers. The ability to detect biochemical changes that preceded lactate utilization revealed citrulline, trehalose, and cellobiose as compounds that may signify metabolic activity of L. buchneri spoilage strains prior to any significant product degradation.


Journal of Food Science | 2015

Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

Ilenys M. Pérez-Díaz; Roger F. McFeeters; L. Moeller; Suzanne D. Johanningsmeier; J. Hayes; D. S. Fornea; L. Rosenberg; C. Gilbert; N. Custis; K. Beene; D. Bass

UNLABELLED Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fermentations can result in significant economic loss for industrial producers. The microbiota that result in spoilage remain incompletely defined. Previous studies have implicated yeasts, lactic acid bacteria, enterobacteriaceae, and Clostridia as having a role in spoilage fermentations. We report that Propionibacterium and Pectinatus isolates from cucumber fermentation spoilage converted lactic acid to propionic acid, increasing pH. The analysis of 16S rDNA cloning libraries confirmed and expanded the knowledge gained from previous studies using classical microbiological methods. Our data show that Gram-negative anaerobic bacteria supersede Gram-positive Fermincutes species after the pH rises from around 3.2 to pH 5, and propionic and butyric acids are produced. Characterization of the spoilage microbiota is an important first step in efforts to prevent cucumber fermentation spoilage. PRACTICAL APPLICATION An understanding of the microorganisms that cause commercial cucumber fermentation spoilage may aid in developing methods to prevent the spoilage from occurring.


Journal of Food Science | 2015

Consumer Acceptability of Cucumber Pickles Produced by Fermentation in Calcium Chloride Brine for Reduced Environmental Impact

Emily M. Wilson; Suzanne D. Johanningsmeier; Jason A. Osborne

This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 μg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various pretreatments and cook times (n = 84) and obtained from quick-service restaurants (n = 64) were used for model development and validation. Acrylamide was quantified using gas chromatography-mass spectrometry, and reflectance spectra (400-2500 nm) of each freeze-dried sample were captured on a Foss XDS Rapid Content Analyzer-NIR spectrometer. Partial least-squares (PLS) discriminant analysis and PLS regression modeling demonstrated that NIRS could accurately detect acrylamide content as low as 50 μg/kg in the model potato matrix. Prediction errors of 135 μg/kg (R(2) = 0.98) and 255 μg/kg (R(2) = 0.93) were achieved with the best PLS models for acrylamide prediction in Russet Norkotah French-fried potato and multiple samples of unknown varieties, respectively. The findings indicate that NIRS can be used as a screening tool in potato breeding and potato processing research to reduce acrylamide in the food supply.


Journal of Food Science | 2018

Chemical Constituents of Sweetpotato Genotypes in Relation to Textural Characteristics of Sweetpotato French Fries.

Ai Sato; Van-Den Truong; Suzanne D. Johanningsmeier; Rong Reynolds; Kenneth V. Pecota; G. Craig Yencho

Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs.

Collaboration


Dive into the Suzanne D. Johanningsmeier's collaboration.

Top Co-Authors

Avatar

Roger F. McFeeters

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Van-Den Truong

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ilenys M. Pérez-Díaz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

H. P. Fleming

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Wendy Franco

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David C. Muddiman

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Erin K. McMurtrie

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fred Breidt

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

G. Craig Yencho

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M.A. Drake

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge