Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne Estes is active.

Publication


Featured researches published by Suzanne Estes.


The American Naturalist | 2007

Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales

Suzanne Estes; Stevan J. Arnold

We tested the ability of six quantitative genetic models to explain the evolution of phenotypic means using an extensive database compiled by Gingerich. Our approach differs from past efforts in that we use explicit models of evolutionary process, with parameters estimated from contemporary populations, to analyze a large sample of divergence data on many different timescales. We show that one quantitative genetic model yields a good fit to data on phenotypic divergence across timescales ranging from a few generations to 10 million generations. The key feature of this model is a fitness optimum that moves within fixed limits. Conversely, a model of neutral evolution, models with a stationary optimum that undergoes Brownian or white noise motion, a model with a moving optimum, and a peak shift model all fail to account for the data on most or all timescales. We discuss our results within the framework of Simpson’s concept of adaptive landscapes and zones. Our analysis suggests that the underlying process causing phenotypic stasis is adaptation to an optimum that moves within an adaptive zone with stable boundaries. We discuss the implication of our results for comparative studies and phylogeny inference based on phenotypic characters.


Genetics | 2004

Mutation Accumulation in Populations of Varying Size: The Distribution of Mutational Effects for Fitness Correlates in Caenorhabditis elegans

Suzanne Estes; Patrick C. Phillips; Dee R. Denver; W. Kelley Thomas; Michael Lynch

The consequences of mutation for population-genetic and evolutionary processes depend on the rate and, especially, the frequency distribution of mutational effects on fitness. We sought to approximate the form of the distribution of mutational effects by conducting divergence experiments in which lines of a DNA repair-deficient strain of Caenorhabditis elegans, msh-2, were maintained at a range of population sizes. Assays of these lines conducted in parallel with the ancestral control suggest that the mutational variance is dominated by contributions from highly detrimental mutations. This was evidenced by the ability of all but the smallest population-size treatments to maintain relatively high levels of mean fitness even under the 100-fold increase in mutational pressure caused by knocking out the msh-2 gene. However, we show that the mean fitness decline experienced by larger populations is actually greater than expected on the basis of our estimates of mutational parameters, which could be consistent with the existence of a common class of mutations with small individual effects. Further, comparison of the total mutation rate estimated from direct sequencing of DNA to that detected from phenotypic analyses implies the existence of a large class of evolutionarily relevant mutations with no measurable effect on laboratory fitness.


Evolution | 2003

RAPID FITNESS RECOVERY IN MUTATIONALLY DEGRADED LINES OF CAENORHABDITIS ELEGANS

Suzanne Estes; Michael Lynch

Abstract Deleterious mutation accumulation has been implicated in many biological phenomena and as a potentially significant threat to human health and the persistence of small populations. The vast majority of mutations with effects on fitness are known to be deleterious in a given environment, and their accumulation results in mean population fitness decline. However, whether populations are capable of recovering from negative effects of prolonged genetic bottlenecks via beneficial or compensatory mutation accumulation has not previously been tested. To address this question, long‐term mutation‐accumulation lines of the nematode Caenorhabditis elegans, previously propagated as single individuals each generation, were maintained in large population sizes under competitive conditions. Fitness assays of these lines and comparison to parallel mutation‐accumulation lines and the ancestral control show that, while the process of fitness restoration was incomplete for some lines, full recovery of mean fitness was achieved in fewer than 80 generations. Several lines of evidence indicate that this fitness restoration was at least partially driven by compensatory mutation accumulation rather than a result of a generic form of laboratory adaptation. This surprising result has broad implications for the influence of the mutational process on many issues in evolutionary and conservation biology.


BMC Evolutionary Biology | 2011

Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae

Suzanne Estes; Anna Luella Coleman-Hulbert; Kiley Ann Hicks; Gene de Haan; Sarah R. Martha; Jeremiah B. Knapp; Samson William Smith; Kevin C. Stein; Dee R. Denver

BackgroundMutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial ND5 deletion recently discovered to segregate among wild populations of the soil nematode, Caenorhabditis briggsae. The normal product of ND5 is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.ResultsWe quantified significant variation among C. briggsae isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific ND5 deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to ND5 deletion level and that C. briggsae isolates with high ND5 deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with ND5 deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured in vivo showed a significant non-linear relationship with ND5 deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms.ConclusionsOur findings suggest that the ND5 deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.


PLOS ONE | 2012

Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

Katie A. Clark; Dana K. Howe; Kristin Gafner; Danika N. Kusuma; Sita Ping; Suzanne Estes; Dee R. Denver

Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.


Genome Research | 2010

Selective sweeps and parallel mutation in the adaptive recovery from deleterious mutation in Caenorhabditis elegans.

Dee R. Denver; Dana K. Howe; Larry J. Wilhelm; Catherine A. Palmer; Jennifer L. Anderson; Kevin C. Stein; Patrick C. Phillips; Suzanne Estes

Deleterious mutation poses a serious threat to human health and the persistence of small populations. Although adaptive recovery from deleterious mutation has been well-characterized in prokaryotes, the evolutionary mechanisms by which multicellular eukaryotes recover from deleterious mutation remain unknown. We applied high-throughput DNA sequencing to characterize genomic divergence patterns associated with the adaptive recovery from deleterious mutation using a Caenorhabditis elegans recovery-line system. The C. elegans recovery lines were initiated from a low-fitness mutation-accumulation (MA) line progenitor and allowed to independently evolve in large populations (N ∼ 1000) for 60 generations. All lines rapidly regained levels of fitness similar to the wild-type (N2) MA line progenitor. Although there was a near-zero probability of a single mutation fixing due to genetic drift during the recovery experiment, we observed 28 fixed mutations. Cross-generational analysis showed that all mutations went from undetectable population-level frequencies to a fixed state in 10-20 generations. Many recovery-line mutations fixed at identical timepoints, suggesting that the mutations, if not beneficial, hitchhiked to fixation during selective sweep events observed in the recovery lines. No MA line mutation reversions were detected. Parallel mutation fixation was observed for two sites in two independent recovery lines. Analysis using a C. elegans interactome map revealed many predicted interactions between genes with recovery line-specific mutations and genes with previously accumulated MA line mutations. Our study suggests that recovery-line mutations identified in both coding and noncoding genomic regions might have beneficial effects associated with compensatory epistatic interactions.


PLOS ONE | 2012

In Vivo Quantification Reveals Extensive Natural Variation in Mitochondrial Form and Function in Caenorhabditis briggsae

Kiley Ann Hicks; Dana K. Howe; Aubrey Leung; Dee R. Denver; Suzanne Estes

We have analyzed natural variation in mitochondrial form and function among a set of Caenorhabditis briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal fitness. We performed in vivo quantification of 24 mitochondrial phenotypes including reactive oxygen species level, membrane potential, and aspects of organelle morphology, and observed significant among-isolate variation in 18 traits. Although several mitochondrial phenotypes were non-linearly associated with nad5Δ levels, most of the among-isolate phenotypic variation could be accounted for by phylogeographic clade membership. In particular, isolate-specific mitochondrial membrane potential was an excellent predictor of clade membership. We interpret this result in light of recent evidence for local adaptation to temperature in C. briggsae. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. This study demonstrates that multicellular eukaryotic species are capable of extensive natural variation in organellar phenotypes and highlights the potential of integrating evolutionary and cell biology perspectives.


Evolution | 2011

FITNESS RECOVERY AND COMPENSATORY EVOLUTION IN NATURAL MUTANT LINES OF C. ELEGANS

Suzanne Estes; Patrick C. Phillips; Dee R. Denver

Deleterious mutation accumulation plays a central role in evolutionary genetics, conservation biology, human health, and evolutionary medicine (e.g., methods of viral attenuation for live vaccines). It is therefore important to understand whether and how quickly populations with accumulated deleterious mutational loads can recover fitness through adaptive evolution. We used laboratory experimental evolution with four long‐term mutation–accumulation (MA) lines of Caenorhabditis elegans nematodes to study the dynamics of such fitness evolution. We previously showed that when homozygous mutant populations are evolved in large population sizes, they can rapidly achieve wild‐type fitness through the accumulation of new beneficial or compensatory epistatic mutations. Here, we expand this approach to demonstrate that when replicate lineages are initiated from the same mutant genotype, phenotypic evolution is only sometimes repeatable. MA genotypes that recovered ancestral fitness in the previous experiment did not always do so here. Further, the pattern of adaptive evolution in independently evolved replicates was contingent upon the MA genotype and varied among fitness‐related traits. Our findings suggest that new beneficial mutations can drive rapid fitness evolution, but that the adaptive process is rendered somewhat unpredictable by its susceptibility to chance events and sensitivity to the evolutionary history of the starting population.


Evolution | 2006

VARIATION IN PLEIOTROPY AND THE MUTATIONAL UNDERPINNINGS OF THE G-MATRIX

Suzanne Estes; Patrick C. Phillips

Abstract The pattern and extent of pleiotropic gene action can contribute substantially to the internal structure and shape of the additive genetic variance-covariance matrix (G)—a key determinant of evolutionary trajectories. We use data from our study (Estes et al. 2004) on the univariate effects of mutation in a mismatch-repair-defective strain, msh-2, of Caenorhabditis elegans to address the impact of increasing levels of selection on the magnitude and pattern of genetic covariance due to new mutations. Mutational covariances between three life-history traits are shown to exhibit a weak pattern of decline with increasing population size (increasing selection), while the orientation of mutational matrices remains reasonably constant. This suggests that mutations with smaller effects on fitness may tend to be slightly more confined in their influence than large-effect mutations (i.e., small-effect mutations reduce the magnitude of covariation between characters), but do not change the direction of this covariation.


Genome Biology and Evolution | 2015

Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae

Wendy S. Phillips; Anna Luella Coleman-Hulbert; Emily S. Weiss; Dana K. Howe; Sita Ping; Riana I. Wernick; Suzanne Estes; Dee R. Denver

Evolutionary interactions across levels of biological organization contribute to a variety of fundamental processes including genome evolution, reproductive mode transitions, species diversification, and extinction. Evolutionary theory predicts that so-called “selfish” genetic elements will proliferate when the host effective population size (Ne) is small, but direct tests of this prediction remain few. We analyzed the evolutionary dynamics of deletion-containing mitochondrial DNA (ΔmtDNA) molecules, previously characterized as selfish elements, in six different natural strains of the nematode Caenorhabditis briggsae allowed to undergo experimental evolution in a range of population sizes (N = 1, 10, 100, and 1,000) for a maximum of 50 generations. Mitochondrial DNA (mtDNA) was analyzed for replicate lineages at each five-generation time point. Ten different ΔmtDNA molecule types were observed and characterized across generations in the experimental populations. Consistent with predictions from evolutionary theory, lab lines evolved in small-population sizes (e.g., nematode N = 1) were more susceptible to accumulation of high levels of preexisting ΔmtDNA compared with those evolved in larger populations. New ΔmtDNA elements were observed to increase in frequency and persist across time points, but almost exclusively at small population sizes. In some cases, ΔmtDNA levels decreased across generations when population size was large (nematode N = 1,000). Different natural strains of C. briggsae varied in their susceptibilities to ΔmtDNA accumulation, owing in part to preexisting compensatory mtDNA alleles in some strains that prevent deletion formation. This analysis directly demonstrates that the evolutionary trajectories of ΔmtDNA elements depend upon the population-genetic environments and molecular-genetic features of their hosts.

Collaboration


Dive into the Suzanne Estes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana K. Howe

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Michael Lynch

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiley Ann Hicks

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Kelley Thomas

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin C. Stein

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge