Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne Humphrey is active.

Publication


Featured researches published by Suzanne Humphrey.


Mbio | 2014

Campylobacter jejuni Is Not Merely a Commensal in Commercial Broiler Chickens and Affects Bird Welfare

Suzanne Humphrey; Gemma Chaloner; Kirsty Kemmett; Nicola Davidson; Nicola Williams; Anja Kipar; Tom J. Humphrey; Paul Wigley

ABSTRACT Campylobacter jejuni is the leading cause of bacterial food-borne infection; chicken meat is its main source. C. jejuni is considered commensal in chickens based on experimental models unrepresentative of commercial production. Here we show that the paradigm of Campylobacter commensalism in the chicken is flawed. Through experimental infection of four commercial breeds of broiler chickens, we show that breed has a significant effect on C. jejuni infection and the immune response of the animals, although these factors have limited impact on the number of bacteria in chicken ceca. All breeds mounted an innate immune response. In some breeds, this response declined when interleukin-10 was expressed, consistent with regulation of the intestinal inflammatory response, and these birds remained healthy. In another breed, there was a prolonged inflammatory response, evidence of damage to gut mucosa, and diarrhea. We show that bird type has a major impact on infection biology of C. jejuni. In some breeds, infection leads to disease, and the bacterium cannot be considered a harmless commensal. These findings have implications for the welfare of chickens in commercial production where C. jejuni infection is a persistent problem. IMPORTANCE Campylobacter jejuni is the most common cause of food-borne bacterial diarrheal disease in the developed world. Chicken is the most common source of infection. C. jejuni infection of chickens had previously not been considered to cause disease, and it was thought that C. jejuni was part of the normal microbiota of birds. In this work, we show that modern rapidly growing chicken breeds used in intensive production systems have a strong inflammatory response to C. jejuni infection that can lead to diarrhea, which, in turn, leads to damage to the feet and legs on the birds due to standing on wet litter. The response and level of disease varied between breeds and is related to regulation of the inflammatory immune response. These findings challenge the paradigm that C. jejuni is a harmless commensal of chickens and that C. jejuni infection may have substantial impact on animal health and welfare in intensive poultry production. Campylobacter jejuni is the most common cause of food-borne bacterial diarrheal disease in the developed world. Chicken is the most common source of infection. C. jejuni infection of chickens had previously not been considered to cause disease, and it was thought that C. jejuni was part of the normal microbiota of birds. In this work, we show that modern rapidly growing chicken breeds used in intensive production systems have a strong inflammatory response to C. jejuni infection that can lead to diarrhea, which, in turn, leads to damage to the feet and legs on the birds due to standing on wet litter. The response and level of disease varied between breeds and is related to regulation of the inflammatory immune response. These findings challenge the paradigm that C. jejuni is a harmless commensal of chickens and that C. jejuni infection may have substantial impact on animal health and welfare in intensive poultry production.


PLOS Neglected Tropical Diseases | 2013

Invasive non-typhoidal Salmonella typhimurium ST313 are not host-restricted and have an invasive phenotype in experimentally infected chickens.

Bryony Parsons; Suzanne Humphrey; Anne Marie Salisbury; Julia Mikoleit; Jay C. D. Hinton; Melita A. Gordon; Paul Wigley

Salmonella enterica serovar Typhimurium Sequence Type (ST) 313 is a major cause of invasive non-Typhoidal salmonellosis in sub-Saharan Africa. No animal reservoir has been identified, and it has been suggested that ST313 is adapted to humans and transmission may occur via person-to-person spread. Here, we show that ST313 cause severe invasive infection in chickens as well as humans. Oral infection of chickens with ST313 isolates D23580 and Q456 resulted in rapid infection of spleen and liver with all birds infected at these sites by 3 days post-infection. In contrast, the well-defined ST19 S. Typhimurium isolates F98 and 4/74 were slower to cause invasive disease. Both ST19 and ST313 caused hepatosplenomegaly, and this was most pronounced in the ST313-infected animals. At 3 and 7 days post-infection, colonization of the gastrointestinal tract was lower in birds infected with the ST313 isolates compared with ST19. Histological examination and expression of CXCL chemokines in the ileum showed that both D23580 (ST313) and 4/74 (ST19) strains caused increased CXCL expression at 3 days post-infection, and this was significantly higher in the ileum of D23580 vs 4/74 infected birds. At 7 days post-infection, reduced chemokine expression occurred in the ileum of the D23580 but not 4/74-infected birds. Histological analysis showed that D23580 infection resulted in rapid inflammation and pathology including villous flattening and fusion at 3 days post-infection, and subsequent resolution by 7 days. In contrast, 4/74 induced less inflammation and pathology at 3 days post-infection. The data presented demonstrate that ST313 is capable of causing invasive disease in a non-human host. The rapid invasive nature of infection in the chicken, coupled with lower gastrointestinal colonization, supports the hypothesis that ST313 is a distinct pathovariant of S. Typhimurium that has evolved to become a systemic pathogen that can cause disease in several hosts.


Applied and Environmental Microbiology | 2014

Dynamics of dual infection with Campylobacter jejuni strains in chickens reveals distinct strain-to-strain variation in infection ecology

Gemma Chaloner; Paul Wigley; Suzanne Humphrey; Kirsty Kemmett; Lizeth Lacharme-Lora; Tom J. Humphrey; Nicola Williams

ABSTRACT Although multiple genotypes of Campylobacter jejuni may be isolated from the same commercial broiler flock, little is known about the infection dynamics of different genotypes within individuals or their colonization sites within the gut. Single experimental infections with C. jejuni M1 (sequence type 137, clonal complex 45) and C. jejuni 13126 (sequence type 21, clonal complex 21) revealed that 13126 colonized the ceca at significantly higher levels. The dissemination and colonization sites of the two C. jejuni strains then were examined in an experimental broiler flock. Two 33-day-old broiler chickens were infected with M1 and two with 13126, and 15 birds were left unchallenged. Cloacal swabs were taken postinfection to determine the colonization and shedding of each strain. By 2 days postinfection (dpi), 8/19 birds were shedding M1 whereas none were shedding 13126. At 8 dpi, all birds were shedding both strains. At 18 dpi, liver and cecal levels of each isolate were quantified, while in 10 birds they also were quantified at nine sites throughout the gastrointestinal (GI) tract. 13126 was found throughout the GI tract, while M1 was largely restricted to the ceca and colon. The livers of 7/19 birds were culture positive for 13126 only. These data show that 13126 has a distinctly different infection biology than strain M1. It showed slower colonization of the lower GI tract but was more invasive and able to colonize at a high level throughout the GI tract. The finding that C. jejuni strains have markedly different infection ecologies within the chicken has implications for control in the poultry industry and suggests that the contamination risk of edible tissues is dependent on the isolate involved.


Microbiology | 2011

Differences in Salmonella enterica serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression

Leann Clark; Charlotte A. Perrett; Layla Malt; Caryn Harward; Suzanne Humphrey; Katy Jepson; Isabel Martinez-Argudo; Laura J. Carney; Roberto M. La Ragione; Tom J. Humphrey; Mark A. Jepson

Most studies on Salmonella enterica serovar Typhimurium infection focus on strains ATCC SL1344 or NTCC 12023 (ATCC 14028). We have compared the abilities of these strains to induce membrane ruffles and invade epithelial cells. S. Typhimurium strain 12023 is less invasive and induces smaller membrane ruffles on MDCK cells compared with SL1344. Since the SPI-1 effector SopE is present in SL1344 and absent from 12023, and SL1344 sopE mutants have reduced invasiveness, we investigated whether 12023 is less invasive due to the absence of SopE. However, comparison of SopE+ and SopE− S. Typhimurium strains, sopE deletion mutants and 12023 expressing a sopE plasmid revealed no consistent relationship between SopE status and relative invasiveness. Nevertheless, absence of SopE was closely correlated with reduced size of membrane ruffles. A PprgH–gfp reporter revealed that relatively few of the 12023 population (and that of the equivalent strain ATCC 14028) express SPI-1 compared to other S. Typhimurium strains. Expression of a PhilA–gfp reporter mirrored that of PprgH–gfp in 12023 and SL1344, implicating reduced signalling via the transcription factor HilA in the heterogeneous SPI-1 expression of these strains. The previously unrecognized strain heterogeneity in SPI-1 expression and invasiveness has important implications for studies of Salmonella infection.


Journal of Bacteriology | 2009

LuxS-Based Quorum Sensing Does Not Affect the Ability of Salmonella enterica Serovar Typhimurium To Express the SPI-1 Type 3 Secretion System, Induce Membrane Ruffles, or Invade Epithelial Cells

Charlotte A. Perrett; Michail H. Karavolos; Suzanne Humphrey; Pietro Mastroeni; Isabel Martinez-Argudo; Hannah Spencer; David M. Bulmer; Klaus Winzer; Emma J. McGhie; Vassilis Koronakis; Paul Williams; C. M. Anjam Khan; Mark A. Jepson

Bacterial species can communicate by producing and sensing small autoinducer molecules by a process known as quorum sensing. Salmonella enterica produces autoinducer 2 (AI-2) via the luxS synthase gene, which is used by some bacterial pathogens to coordinate virulence gene expression with population density. We investigated whether the luxS gene might affect the ability of Salmonella enterica serovar Typhimurium to invade epithelial cells. No differences were found between the wild-type strain of S. Typhimurium, SL1344, and its isogenic luxS mutant with respect to the number and morphology of the membrane ruffles induced or their ability to invade epithelial cells. The dynamics of the ruffling process were also similar in the wild-type strain (SL1344) and the luxS mutant. Furthermore, comparing the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion profiles of wild-type SL1344 and the luxS mutant by Western blotting and measuring the expression of a single-copy green fluorescent protein fusion to the prgH (an essential SPI-1 gene) promoter indicated that SPI-1 expression and activity are similar in the wild-type SL1344 and luxS mutant. Genetic deletion of luxS did not alter the virulence of S. Typhimurium in the mouse model, and therefore, it appears that luxS does not play a significant role in regulating invasion of Salmonella in vitro or in vivo.


Avian Pathology | 2014

The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens

Kirsty Kemmett; Nicola Williams; Gemma Chaloner; Suzanne Humphrey; Paul Wigley; Tom J. Humphrey

Avian pathogenic Escherichia coli (APEC) are a substantial burden to the global poultry industry. APEC cause a syndromic poultry infection known as colibacillosis, which has been previously associated with broiler chickens over 2 weeks old. We recently reported that the intestinal tract of 1-day-old broilers harbours a rich reservoir of potentially pathogenic E. coli. Prior infections of the reproductive tract of breeders, egg hygiene and transportation all contribute to early colonization of the neonatal gut. Up to one-half of all flock deaths occur in the first week of production, but few data are available describing the contribution of E. coli. In the present study, all dead birds collected on the first daily welfare walk 48 and 72 h after chick placement underwent post-mortem examination. Diseased tissues were selectively cultured for E. coli and isolates subsequently virulotyped using 10 APEC virulence-associated genes (VAGs): astA, iss, irp2, iucD, papC, tsh, vat, cvi, sitA and ibeA. Approximately 70% of birds displayed signs of colibacillosis. Thirty distinct virulence profiles were identified among 157 E. coli. Isolates carried between zero and seven VAGs; ∼30% of E. coli isolates carried five to seven VAGs, with 12.7% sharing the same VAG profile (astA, iss, irp2, iucD, tsh, cvi and sitA). Overall, this study demonstrates the significant contribution of E. coli infections to early broiler mortalities. The identification of a diverse E. coli population is unsurprising based on our previous findings. This work emphasizes the need for an effective vaccination programme and provides preliminary data for vaccine production.


PLOS ONE | 2015

Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry

Suzanne Humphrey; Lizeth Lacharme-Lora; Gemma Chaloner; Kirsty Gibbs; Tom J. Humphrey; Nicola Williams; Paul Wigley

Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.


Journal of Applied Microbiology | 2011

SulA-induced filamentation in Salmonella enterica serovar Typhimurium: effects on SPI-1 expression and epithelial infection

Suzanne Humphrey; T MacVicar; Andrew Stevenson; Mark Roberts; Tom J. Humphrey; Mark A. Jepson

Aims:  Salmonella enterica serovar Typhimurium is capable of adopting a filamentous phenotype in response to damage. How this adaptive response affects bacterial virulence is unclear. We have examined the hypothesis that filamentation affects the ability of Salmonella to infect host cells.


Scientific Reports | 2017

Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models

Stefan P. W. de Vries; Srishti Gupta; Abiyad Baig; Elli A. Wright; Amy L. Wedley; Annette Nygaard Jensen; Lizeth LaCharme Lora; Suzanne Humphrey; Henrik Skovgård; Kareen Macleod; Elsa Pont; Dominika P. Wolanska; Joanna L'Heureux; Fredrick M. Mobegi; David George Emslie Smith; Paul Everest; Aldert Zomer; Nicola Williams; Paul Wigley; Tom J. Humphrey; Duncan J. Maskell; Andrew J. Grant

Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and –poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.


Royal Society Open Science | 2016

Cytokine responses in birds challenged with the human food- borne pathogen Campylobacter jejuni implies a Th17 response

William D. K. Reid; Andrew Close; Suzanne Humphrey; Gemma Chaloner; Lizeth Lacharme-Lora; Lisa Rothwell; Peter K. Kaiser; Nicola Williams; Tom J. Humphrey; Paul Wigley; Stephen Rushton

Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM). SEM provides a framework by which cytokine interdependencies, based on prior knowledge, can be tested. In both breeds important cytokines including pro-inflammatory interleukin (IL)-1β, , IL-4, IL-17A, interferon (IFN)-γ and anti-inflammatory IL-10 and transforming growth factor (TGF)-β4 were expressed post-challenge. The SEM revealed a putative regulatory pathway illustrating a T helper (Th)17 response and regulation of IL-10, which is breed-dependent. The prominence of the Th17 pathway indicates the cytokine response aims to limit the invasion or colonization of an extracellular bacterial pathogen but the time-dependent nature of the response differs between breeds.

Collaboration


Dive into the Suzanne Humphrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Wigley

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsty Gibbs

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge