Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne L. Advani is active.

Publication


Featured researches published by Suzanne L. Advani.


Hypertension | 2009

The (Pro)Renin Receptor Site-Specific and Functional Linkage to the Vacuolar H+-ATPase in the Kidney

Andrew Advani; Darren J. Kelly; Alison J. Cox; Kathryn White; Suzanne L. Advani; Kerri Thai; Kim A. Connelly; Darren Yuen; Judy Trogadis; Andrew M. Herzenberg; Michael A. Kuliszewski; Howard Leong-Poi; Richard E. Gilbert

The (pro)renin receptor ([P]RR) is a transmembrane protein that binds both renin and prorenin with high affinity, increasing the catalytic cleavage of angiotensinogen and signaling intracellularly through mitogen-activated protein kinase activation. Although initially reported as having no homology with any known membrane protein, other studies have suggested that the (P)RR is an accessory protein, named ATP6ap2, that associates with the vacuolar H+-ATPase, a key mediator of final urinary acidification. Using in situ hybridization, immunohistochemistry, and electron microscopy, together with serial sections stained with nephron segment–specific markers, we found that (P)RR mRNA and protein were predominantly expressed in collecting ducts and in the distal nephron. Within collecting ducts, the (P)RR was most abundant in microvilli at the apical surface of A-type intercalated cells. Dual-staining immunofluorescence demonstrated colocalization of the (P)RR with the B1/2 subunit of the vacuolar H+-ATPase, the ion exchanger that secretes H+ ions into the urinary space and that associates with an accessory subunit homologous to the (P)RR. In collecting duct/distal tubule lineage Madin-Darby canine kidney cells, extracellular signal–regulated kinase 1/2 phosphorylation, induced by either renin or prorenin, was attenuated by the selective vacuolar H+-ATPase inhibitor bafilomycin. The predominant expression of the (P)RR at the apex of acid-secreting cells in the collecting duct, along with its colocalization and homology with an accessory protein of the vacuolar H+-ATPase, suggests that the (P)RR may function primarily in distal nephron H+ transport, recently noted to be, at least in part, an angiotensin II–dependent phenomenon.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions

Andrew Advani; Darren J. Kelly; Suzanne L. Advani; Alison J. Cox; Kerri Thai; Yuan Zhang; Kathryn White; Renae M. Gow; Sally M. Marshall; Brent M. Steer; Philip A. Marsden; P. Elizabeth Rakoczy; Richard E. Gilbert

Inhibiting the actions of VEGF is a new therapeutic paradigm in cancer management with antiangiogenic therapy also under intensive investigation in a range of nonmalignant diseases characterized by pathological angiogenesis. However, the effects of VEGF inhibition on organs that constitutively express it in adulthood, such as the kidney, are mostly unknown. Accordingly, we examined the effect of VEGF inhibition on renal structure and function under physiological conditions and in the setting of the common renal stressors: hypertension and activation of the renin–angiotensin system. When compared with normotensive Sprague–Dawley (SD) rats, glomerular VEGF mRNA was increased 2-fold in transgenic (mRen-2)27 rats that overexpress renin with spontaneously hypertensive rat (SHR) kidneys showing VEGF expression levels that were intermediate between them. Administration of either an orally active inhibitor of the type 2 VEGF receptor (VEGFR-2) tyrosine kinase or a VEGF neutralizing antibody to TGR(mRen-2)27 rats resulted in loss of glomerular endothelial cells and transformation to a malignant hypertensive phenotype with severe glomerulosclerosis. VEGFR-2 kinase inhibition treatment was well tolerated in SDs and SHRs; although even in these animals there was detectable endothelial cell loss and rise in albuminuria. Mild mesangial expansion was also noted in hypertensive SHR, but not in SD rats. These studies illustrate: (i) VEGF has a role in the maintenance of glomerular endothelial integrity under physiological circumstances, (ii) glomerular VEGF is increased in response to hypertension and activation of the renin–angiotensin system, and (iii) VEGF signaling plays a protective role in the setting of these renal stressors.


American Journal of Pathology | 2011

Long-Term Administration of the Histone Deacetylase Inhibitor Vorinostat Attenuates Renal Injury in Experimental Diabetes through an Endothelial Nitric Oxide Synthase-Dependent Mechanism

Andrew Advani; Qingling Huang; Kerri Thai; Suzanne L. Advani; Kathryn White; Darren J. Kelly; Darren A. Yuen; Kim A. Connelly; Philip A. Marsden; Richard E. Gilbert

Epigenetic changes in gene expression play a role in the development of diabetic complications, including nephropathy. Histone deacetylases (HDACs) are a group of enzymes that exert epigenetic effects by altering the acetylation status of histone and nonhistone proteins. In the current study, we investigated the action of the clinically available HDAC inhibitor vorinostat in a mouse model of diabetic nephropathy, with the following aims: to define its effect on the progression of renal injury and to explore its mechanism of action by focusing on its role in regulating the expression of endothelial nitric oxide synthase (eNOS). Control and streptozotocin-diabetic wild-type and eNOS(-/-) mice were treated with vorinostat by daily oral dosing for 18 weeks. Without affecting either blood glucose concentration or blood pressure, vorinostat decreased albuminuria, mesangial collagen IV deposition, and oxidative-nitrosative stress in streptozotocin-wild-type mice. These attenuating effects were associated with a >50% reduction in eNOS expression in mouse kidneys and in cultured human umbilical vein endothelial cells. Vorinostat treatment had no effect on albuminuria, glomerular collagen IV concentration, or mesangiolysis in diabetic mice genetically deficient in eNOS. These observations illustrate the therapeutic efficacy of long-term HDAC inhibition in diabetic nephropathy and emphasize the importance of the interplay between eNOS activity and oxidative stress in mediating these effects.


Journal of The American Society of Nephrology | 2012

eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

Darren A. Yuen; Bailey Stead; Yanling Zhang; Kathryn White; M. Golam Kabir; Kerri Thai; Suzanne L. Advani; Kim A. Connelly; Tomoko Takano; Lei Zhu; Alison J. Cox; Darren J. Kelly; Ian W. Gibson; Takamune Takahashi; Raymond C. Harris; Andrew Advani

Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS(-/-) mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS(-/-) mice, even though it inhibited glomerular capillary enlargement in both. In eNOS(-/-) mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS(-/-) mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS(-/-) glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes.


Kidney International | 2011

Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor

Richard E. Gilbert; Qingling Huang; Kerri Thai; Suzanne L. Advani; Kodie Lee; Darren A. Yuen; Kim A. Connelly; Andrew Advani

Clinical trials and experimental studies have highlighted the importance of epigenetic processes in the development of diabetic complications. One of the earliest features of diabetic nephropathy is renal enlargement. The epidermal growth factor (EGF) has a pivotal role in the development of diabetic nephromegaly and transactivation of its receptor has been implicated in the pathogenesis of later-stage disease. As EGF signaling is altered by the acetylation status of histone proteins, we measured the effects of the histone deacetylase (HDAC) inhibitor, vorinostat, in mediating renal enlargement in diabetes focusing on the EGF-EGF receptor (EGFR) axis. In cultured proximal tubule (normal rat kidney) cells, vorinostat treatment reduced EGFR protein and mRNA, and attenuated cellular proliferation. Within 72 h of diabetes induction with streptozotocin, urinary EGF excretion was increased approximately threefold and was unaffected by vorinostat, even though the kidneys of vorinostat-treated diabetic rats had reduced tubular epithelial cell proliferation. Daily treatment of diabetic rats with vorinostat for 4 weeks blunted renal growth and glomerular hypertrophy. Thus, early renal changes in diabetes are amenable to epigenetic intervention. Attenuating effects of HDAC inhibition, although multifactorial, are likely to be mediated in part through downregulation of the EGFR.


Cardiovascular Therapeutics | 2013

DPP-4 Inhibition Attenuates Cardiac Dysfunction and Adverse Remodeling Following Myocardial Infarction in Rats with Experimental Diabetes

Kim A. Connelly; Yanling Zhang; Andrew Advani; Suzanne L. Advani; Kerri Thai; Darren A. Yuen; Richard E. Gilbert

AIMS Following myocardial infarction (MI), individuals with diabetes have a two-fold increase in the risk of heart failure, due in part to excessive loss of cardiac microvasculature. Endothelial integrity and restitution are mediated in part by stromal cell-derived factor-1α (SDF-1α), a chemokine that is elaborated by ischemic tissue but rapidly degraded by dipeptidyl peptidase-4 (DPP-4). Accordingly, we hypothesized that inhibiting this enzyme may confer benefit following myocardial infarction in the diabetic setting beyond its effect on glycemia. METHODS AND RESULTS Fischer F344 rats with streptozotocin (STZ)-diabetes were randomized to receive vehicle or the DPP-4 inhibitor, sitagliptin (300 mg/kg/day). Two weeks later, animals underwent experimental MI, induced by ligation of the left anterior descending coronary artery. Cardiac function was assessed by conductance catheterization and echocardiography along with cardiac structure 4 weeks post-MI. Following MI, untreated diabetic rats developed both systolic and diastolic cardiac dysfunction, in association with endothelial cell loss, fibrosis, and myocyte hypertrophy. Without affecting plasma glucose, sitagliptin treatment led to an improvement in passive left ventricular compliance, increased endothelial cell density, reduced myocyte hypertrophy, and a reduction in the abundance of collagen 1 (all P < 0.05). Systolic function was unchanged. CONCLUSIONS This study shows that DPP-4 inhibition attenuates several, but not all, aspects of cardiac dysfunction and adverse remodeling in the post-MI setting.


PLOS ONE | 2010

Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism.

Darren A. Yuen; Kim A. Connelly; Andrew Advani; Christine Liao; Michael A. Kuliszewski; Judy Trogadis; Kerri Thai; Suzanne L. Advani; Yuan Zhang; Darren J. Kelly; Howard Leong-Poi; Armand Keating; Philip A. Marsden; Duncan J. Stewart; Richard E. Gilbert

Background Most forms of chronic kidney disease are characterized by progressive renal and cardiac fibrosis leading to dysfunction. Preliminary evidence suggests that various bone marrow-derived cell populations have antifibrotic effects. In exploring the therapeutic potential of bone marrow derived cells in chronic cardio-renal disease, we examined the anti-fibrotic effects of bone marrow-derived culture modified cells (CMCs) and stromal cells (SCs). Methodology/Principal Findings In vitro, CMC-conditioned medium, but not SC-conditioned medium, inhibited fibroblast collagen production and cell signalling in response to transforming growth factor-ß. The antifibrotic effects of CMCs and SCs were then evaluated in the 5/6 nephrectomy model of chronic cardio-renal disease. While intravascular infusion of 106 SCs had no effect, 106 CMCs reduced renal fibrosis compared to saline in the glomeruli (glomerulosclerosis index: 0.8±0.1 v 1.9±0.2 arbitrary units) and the tubulointersitium (% area type IV collagen: 1.2±0.3 v 8.4±2.0, p<0.05 for both). Similarly, 106 CMCs reduced cardiac fibrosis compared to saline (% area stained with picrosirius red: 3.2±0.3 v 5.1±0.4, p<0.05), whereas 106 SCs had no effect. Structural changes induced by CMC therapy were accompanied by improved function, as reflected by reductions in plasma creatinine (58±3 v 81±11 µmol/L), urinary protein excretion (9×/÷1 v 64×/÷1 mg/day), and diastolic cardiac stiffness (left ventricular end-diastolic pressure-volume relationship: 0.030±0.003 v 0.058±0.011 mm Hg/µL, p<0.05 for all). Despite substantial improvements in structure and function, only rare CMCs were present in the kidney and heart, whereas abundant CMCs were detected in the liver and spleen. Conclusions/Significance Together, these findings provide the first evidence suggesting that CMCs, but not SCs, exert a protective action in cardio-renal disease and that these effects may be mediated by the secretion of diffusible anti-fibrotic factor(s).


PLOS ONE | 2011

Fluorescent Microangiography Is a Novel and Widely Applicable Technique for Delineating the Renal Microvasculature

Andrew Advani; Kim A. Connelly; Darren A. Yuen; Yanling Zhang; Suzanne L. Advani; Judy Trogadis; M. Golam Kabir; Etai Shachar; Michael A. Kuliszewski; Howard Leong-Poi; Duncan J. Stewart; Richard E. Gilbert

Rarefaction of the renal microvasculature correlates with declining kidney function. However, current technologies commonly used for its evaluation are limited by their reliance on endothelial cell antigen expression and assessment in two dimensions. We set out to establish a widely applicable and unbiased optical sectioning method to enable three dimensional imaging and reconstruction of the renal microvessels based on their luminal filling. The kidneys of subtotally nephrectomized (SNx) rats and their sham-operated counterparts were subjected to either routine two-dimensional immunohistochemistry or the novel technique of fluorescent microangiography (FMA). The latter was achieved by perfusion of the kidney with an agarose suspension of fluorescent polystyrene microspheres followed by optical sectioning of 200 µm thick cross-sections using a confocal microscope. The fluorescent microangiography method enabled the three-dimensional reconstruction of virtual microvascular casts and confirmed a reduction in both glomerular and peritubular capillary density in the kidneys of SNx rats, despite an overall increase in glomerular volume. FMA is an uncomplicated technique for evaluating the renal microvasculature that circumvents many of the limitations imposed by conventional analysis of two-dimensional tissue sections.


Scientific Reports | 2015

The Tie2-agonist Vasculotide rescues mice from influenza virus infection

Michael G. Sugiyama; Susan Armstrong; Changsen Wang; David M. Hwang; Howard Leong-Poi; Andrew Advani; Suzanne L. Advani; Haibo Zhang; Katalin Szászi; Arata Tabuchi; Wolfgang M. Kuebler; Paul Van Slyke; Dan J. Dumont; Warren L. Lee

Seasonal influenza virus infections cause hundreds of thousands of deaths annually while viral mutation raises the threat of a novel pandemic strain. Antiviral drugs exhibit limited efficacy unless administered early and may induce viral resistance. Thus, targeting the host response directly has been proposed as a novel therapeutic strategy with the added potential benefit of not eliciting viral resistance. Severe influenza virus infections are complicated by respiratory failure due to the development of lung microvascular leak and acute lung injury. We hypothesized that enhancing lung endothelial barrier integrity could improve the outcome. Here we demonstrate that the Tie2-agonist tetrameric peptide Vasculotide improves survival in murine models of severe influenza, even if administered as late as 72 hours after infection; the benefit was observed using three strains of the virus and two strains of mice. The effect required Tie2, was independent of viral replication and did not impair lung neutrophil recruitment. Administration of the drug decreased lung edema, arterial hypoxemia and lung endothelial apoptosis; importantly, Vasculotide is inexpensive to produce, is chemically stable and is unrelated to any Tie2 ligands. Thus, Vasculotide may represent a novel and practical therapy for severe infections with influenza.


Diabetes | 2012

Early-Outgrowth Bone Marrow Cells Attenuate Renal Injury and Dysfunction Via an Antioxidant Effect in a Mouse Model of Type 2 Diabetes

Yanling Zhang; Darren A. Yuen; Andrew Advani; Kerri Thai; Suzanne L. Advani; David M. Kepecs; M. Golam Kabir; Kim A. Connelly; Richard E. Gilbert

Cell therapy has been extensively investigated in heart disease but less so in the kidney. We considered whether cell therapy also might be useful in diabetic kidney disease. Cognizant of the likely need for autologous cell therapy in humans, we sought to assess the efficacy of donor cells derived from both healthy and diabetic animals. Eight-week-old db/db mice were randomized to receive a single intravenous injection of PBS or 0.5 × 106 early-outgrowth cells (EOCs) from db/m or db/db mice. Effects were assessed 4 weeks after cell infusion. Untreated db/db mice developed mesangial matrix expansion and tubular epithelial cell apoptosis in association with increased reactive oxygen species (ROS) and overexpression of thioredoxin interacting protein (TxnIP). Without affecting blood glucose or blood pressure, EOCs not only attenuated mesangial and peritubular matrix expansion, as well as tubular apoptosis, but also diminished ROS and TxnIP overexpression in the kidney of db/db mice. EOCs derived from both diabetic db/db and nondiabetic db/m mice were equally effective in ameliorating kidney injury and oxidative stress. The similarly beneficial effects of cells from healthy and diabetic donors highlight the potential of autologous cell therapy in the related clinical setting.

Collaboration


Dive into the Suzanne L. Advani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerri Thai

St. Michael's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren J. Kelly

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge