Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne M. Mandala is active.

Publication


Featured researches published by Suzanne M. Mandala.


Journal of Clinical Investigation | 2007

Essential role of sphingosine 1–phosphate receptor 2 in pathological angiogenesis of the mouse retina

Athanasia Skoura; Teresa Sanchez; Kevin P. Claffey; Suzanne M. Mandala; Richard L. Proia; Timothy Hla

Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator that signals via the S1P family of G protein-coupled receptors (S1PR), regulates vascular maturation, permeability, and angiogenesis. In this study, we explored the role of S1P 2 receptor (S1P2R) in normal vascularization and hypoxia-triggered pathological angiogenesis of the mouse retina. S1P2R is strongly induced in ECs during hypoxic stress. When neonatal mice were subjected to ischemia-driven retinopathy, pathologic neovascularization in the vitreous chamber was suppressed in S1p2-/- mice concomitant with reduction in endothelial gaps and inflammatory cell infiltration. In addition, EC patterning and normal revascularization into the avascular zones of the retina were augmented. Reduced expression of the proinflammatory enzyme cyclooxygenase-2 (COX-2) and increased expression of eNOS were observed in the S1p2-/- mouse retina. S1P2R activation in ECs induced COX-2 expression and suppressed the expression of eNOS. These data identify the S1P2R-driven inflammatory process as an important molecular event in pathological retinal angiogenesis. We propose that antagonism of the S1P2R may be a novel therapeutic approach for the prevention and/or treatment of pathologic ocular neovascularization.


Journal of Biological Chemistry | 1997

Khafrefungin, a novel inhibitor of sphingolipid synthesis.

Suzanne M. Mandala; Rosemary A. Thornton; Mark Rosenbach; James A. Milligan; Margarita Garcia-Calvo; Herbert G. Bull; Myra B. Kurtz

In the course of screening for antifungal agents we have discovered a novel compound isolated from an endophytic fungus that inhibits fungal sphingolipid synthesis. Khafrefungin, which is composed of aldonic acid linked via an ester to a C22 modified alkyl chain, has fungicidal activity against Candida albicans,Cryptococcus neoformans, and Saccharomyces cerevisiae. Sphingolipid synthesis is inhibited in these organisms at the step in which phosphoinositol is transferred to ceramide, resulting in accumulation of ceramide and loss of all of the complex sphingolipids. In vitro, khafrefungin inhibits the inositol phosphoceramide synthase of C. albicans with an IC50 of 0.6 nm. Khafrefungin does not inhibit the synthesis of mammalian sphingolipids thus making this the first reported compound that is specific for the fungal pathway.


Journal of Biological Chemistry | 1998

Rustmicin, a Potent Antifungal Agent, Inhibits Sphingolipid Synthesis at Inositol Phosphoceramide Synthase

Suzanne M. Mandala; Rosemary A. Thornton; James A. Milligan; Mark Rosenbach; Margarita Garcia-Calvo; Herbert G. Bull; Guy H. Harris; George K. Abruzzo; Amy M. Flattery; Charles Gill; Kenneth F. Bartizal; Sarah Dreikorn; Myra B. Kurtz

Rustmicin is a 14-membered macrolide previously identified as an inhibitor of plant pathogenic fungi by a mechanism that was not defined. We discovered that rustmicin inhibits inositol phosphoceramide synthase, resulting in the accumulation of ceramide and the loss of all of the complex sphingolipids. Rustmicin has potent fungicidal activity against clinically important human pathogens that is correlated with its sphingolipid inhibition. It is especially potent against Cryptococcus neoformans, where it inhibits growth and sphingolipid synthesis at concentrations <1 ng/ml and inhibits the enzyme with an IC50 of 70 pm. This inhibition of the membrane-bound enzyme is reversible; moreover, rustmicin is nearly equipotent against the solubilized enzyme. Rustmicin was efficacious in a mouse model for cryptococcosis, but it was less active than predicted from its in vitro potency against this pathogen. Stability and drug efflux were identified as two factors limiting rustmicin’s activity. In the presence of serum, rustmicin rapidly epimerizes at the C-2 position and is converted to a γ-lactone, a product that is devoid of activity. Rustmicin was also found to be a remarkably good substrate for the Saccharomyces cerevisiae multidrug efflux pump encoded by PDR5.


Journal of Immunology | 2005

Sphingosine-1-Phosphate Agonists Increase Macrophage Homing, Lymphocyte Contacts, and Endothelial Junctional Complex Formation in Murine Lymph Nodes

Irwin I. Singer; Min Tian; L. Alexandra Wickham; Jeffrey Lin; Scaria S. Matheravidathu; Michael J. Forrest; Suzanne M. Mandala; Elizabeth J. Quackenbush

The sphingosine-1-phosphate (S1P) receptor agonist, phosphorylated FTY720 (FTY-P), causes lymphopenia, lymphocyte sequestration in mesenteric lymph nodes (MLNs), and immunosuppression. Using multiple techniques to analyze MLN cells harvested from mice treated with S1P receptor agonists, we saw a redistribution of lymphocytes out of nodal sinuses and an expansion of follicles. Although changes in circulating monocytes were not observed with overnight exposure to FTY720, we saw a significant increase in S1P receptor 1 (S1P1)-expressing CD68+ macrophages in subcapsular sinuses of FTY-P-treated MLNs. This was confirmed by quantitative analysis of F4/80+ cells in MLN suspensions. The sinus volume and number of S1P1-positive cells within sinuses were also increased by FTY-P. High endothelial venules and lymphatic endothelium expressed high levels of S1P1, and treatment with FTY-P resulted in intense staining and colocalization of CD31, β-catenin, and zona occludens 1 in junctions between sinus cells. Transmission electron microscopy showed that FTY-P greatly reduced lymphocyte microvilli and increased cell-cell contacts in the parenchyma. Immunoelectron microscopy revealed that intranodal lymphocytes lacked surface expression of S1P1, whereas S1P1 was evident on the surface and within the cytoplasm of macrophages, endothelial cells, and stromal cells. This subcellular pattern of intranodal receptor distribution was unchanged by treatment with FTY-P. We conclude that S1P1 agonists have profound effects on macrophages and endothelial cells, in addition to inducing lymphopenia.


Prostaglandins & Other Lipid Mediators | 2001

Sphingosine-1-phosphate phosphatases.

Suzanne M. Mandala

Sphingosine-1-phosphate is a potent proliferative, survival, and morphogenetic factor, acting as an extracellular ligand for the EDG family of G-protein-coupled receptors and possibly intracellularly through as yet, unidentified targets. It is produced within most, if not all cells by phosphorylation of sphingosine, and is an abundant serum lipid that is released from activated platelets. Sphingosine and sphingosine-1-phosphate are in dynamic equilibrium with each other due to the activities of sphingosine kinase and sphingosine-1-phosphate phosphatase (SPPase). Several SPPase genes have now been cloned, first from yeast and more recently from mammalian cells. By sequence homology, these enzymes can be classified as a subset of membrane bound, Type 2 lipid phosphohydrolases that contain conserved residues within three domains predicted to be at the active site of the enzyme. Outside of the consensus motif, there is very little homology between SPPases and the other type 2 lipid phosphohydrolases in the LPP/PAP family. Type 2 phosphatase activity is Mg+-independent and insensitive to N-ethylmaleimide, and substrate specificity is broad for LPP enzymes, whereas SPPases are highly selective for sphingolipid substrates. SPPase activity in yeast and mammalian cells regulates intracellular sphingosine-1-phosphate levels, and also alters the levels of sphingosine and ceramide, two other signaling molecules that often oppose the actions of sphingosine-1-phosphate. Thus, loss of SPPase in yeast results in high sphingosine-1-phosphate levels and cells are more resistant to stress, and in mammalian cells, overexpression of SPPase elevates ceramide levels and provokes apoptosis.


Journal of Leukocyte Biology | 2005

Sphingosine 1‐phosphate receptor agonist FTY720‐phosphate causes marginal zone B cell displacement

Kalpit A. Vora; Elizabeth A. Nichols; Gene Porter; Yan Cui; Carol Ann Keohane; Richard Hajdu; Jeffery Hale; William E. Neway; Dennis M. Zaller; Suzanne M. Mandala

FTY720 is an immunosuppressive agent that modulates lymphocyte trafficking. It is phosphorylated in vivo to FTY720‐phosphate (FTY‐P) and binds to a family of G protein‐coupled receptors recognizing sphingosine 1‐phosphate (S1P) as the natural ligand. It has previously been reported that FTY‐P blocks egress of lymphocytes from the thymus and lymph nodes, resulting in peripheral blood lymphopenia. We now report that FTY‐P also causes displacement of marginal zone (MZ) B cells to the splenic follicles, an effect that is similar to that observed after in vivo administration of lipopolysaccharide. This effect is specific to B cells in the MZ, as treatment with FTY‐P does not cause redistribution of the resident macrophage population. A small but statistically significant decrease in the expression of β1 integrin on MZ B cells was observed with FTY‐P treatment. The redistribution of MZ B cells from the MZ sinuses does not abolish the ability of these cells to respond to the T‐independent antigen, trinitrophenol‐Ficoll. It has been proposed that the displacement of MZ B cells to the follicles is an indication of cell activation. Consistent with this, FTY‐P caused an increase in percentage of MZ B cells expressing activation markers CD9, CD1d, and CD24. These results suggest that S1P receptors on MZ B cells are responsible for their mobilization to follicles.


Biochemical and Biophysical Research Communications | 2002

Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor.

Mari R. Candelore; Michael Wright; Laurie Tota; James A. Milligan; Gan-Ju Shei; James D. Bergstrom; Suzanne M. Mandala

It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.


Methods in Enzymology | 2000

[35] Isolation and characterization of novel inhibitors of sphingolipid synthesis: Australifungin, viridiofungins, rustmicin, and khafrefungin

Suzanne M. Mandala; Guy H. Harris

Publisher Summary Sphingolipid synthesis is an essential process in yeast and the pathogenic fungi that cause life-threatening human infections such as candidiasis, aspergillosis, and cryptococcosis. Although many steps in the human and fungal sphingolipid biosynthetic pathway are similar, there are several enzymes found uniquely in fungi that are potential targets for the development of nontoxic therapeutic antifungals. In the screening program, it has been found that natural products are a rich source of structurally diverse inhibitors of sphingolipid synthesis. Natural product inhibitors to four different enzymes that affect sphingolipid synthesis have been discovered: sphingofungins, lipoxamycin, myriocin/ISP1, and viridiofungins inhibit serine palmitoyltransferase; fumonisin B1 and australifungin, inhibit ceramide synthase; aureobasidins, khafrefungin, and rustmicin inhibit inositol phosphoceramide synthase; and minimoidin inhibits the fatty acid elongation pathway. Most of these compounds have fungicidal activity against a broad spectrum of pathogenic fungi, but only the inhibitors of inositol phosphoceramide are fungal selective; compounds that inhibit early biosynthetic steps show comparable activity against orthologous mammalian enzymes. This chapter describes a method to identify sphingolipid inhibitors and detailed protocol for the isolation of australifungin. More abbreviated descriptions of the isolation of viridiofungins, khafrefungin, and rustmicin are also included.


Assay and Drug Development Technologies | 2003

A Fully Automated [35S]GTPγS Scintillation Proximity Assay for the High-Throughput Screening of Gi-Linked G Protein-Coupled Receptors

Marc Ferrer; Garrett Kolodin; Paul Zuck; Richard Peltier; Kurtis Berry; Suzanne M. Mandala; Hugh Rosen; Hisashi Ota; Satoshi Ozaki; James Inglese; Berta Strulovici

The diversity of physiological functions mediated by the GPCR superfamily provides a rich source of molecular targets for drug discovery programs. Consequently, a variety of assays have been designed to identify lead molecules based on ligand binding or receptor function. In one of these, the binding of [(35)S]GTPgammaS, a nonhydrolyzable analogue of GTP, to receptor-activated G-protein alpha subunits represents a unique functional assay for GPCRs and is well suited for use with automated HTS. Here we compare [(35)S]GTPgammaS scintillation proximity binding assays for two different G(i)-coupled GPCRs, and describe their implementation with automated high-throughput systems.


Journal of Medicinal Chemistry | 2012

1,3,8-Triazaspiro[4.5]decane-2,4-diones as efficacious pan-inhibitors of hypoxia-inducible factor prolyl hydroxylase 1-3 (HIF PHD1-3) for the treatment of anemia.

Petr Vachal; Shouwu Miao; Joan M. Pierce; Deodial Guiadeen; Vincent J. Colandrea; Matthew J. Wyvratt; Scott P. Salowe; Lisa M. Sonatore; James A. Milligan; Richard Hajdu; Anantha Gollapudi; Carol Ann Keohane; Russell B. Lingham; Suzanne M. Mandala; Julie A. DeMartino; Xinchun Tong; Michael Wolff; Dietrich Steinhuebel; Gerard R. Kieczykowski; Fred J. Fleitz; Kevin T. Chapman; John Athanasopoulos; Gregory C. Adam; Can D. Akyuz; Dhirendra K. Jena; Jeffrey W. Lusen; Juncai Meng; Benjamin D. Stein; Lei Xia; Edward C. Sherer

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.

Researchain Logo
Decentralizing Knowledge