Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne R. Thorpe is active.

Publication


Featured researches published by Suzanne R. Thorpe.


Journal of Clinical Investigation | 1993

Accumulation of Maillard reaction products in skin collagen in diabetes and aging.

Daniel G. Dyer; John A. Dunn; Suzanne R. Thorpe; Karen E. Bailie; Timothy L. Lyons; David R. McCance; John W. Baynes

Abstract To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.


Journal of Biological Chemistry | 2000

Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products

Nicole Verzijl; Jeroen DeGroot; Suzanne R. Thorpe; Ruud A. Bank; J. Nikki Shaw; Timothy J. Lyons; Johannes W. J. Bijlsma; Floris Lafeber; John W. Baynes; Johan M. TeKoppele

Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N ε-(carboxymethyl)lysine,N ε-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p< 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus% d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.


Free Radical Biology and Medicine | 2000

Glycoxidation and lipoxidation in atherogenesis

John W. Baynes; Suzanne R. Thorpe

Atherosclerosis may be viewed as an age-related disease initiated by nonenzymatic, chemical reactions in a biological system. The peroxidation of lipids in lipoproteins in the vascular wall leads to local production of reactive carbonyl species that mediate recruitment of macrophages, cellular activation and proliferation, and chemical modification of vascular proteins by advanced lipoxidation end-products (ALEs). The ALEs and their precursors affect the structure and function of the vascular wall, setting the stage for atherogenesis. The increased risk for atherosclerosis in diabetes may result from additional carbonyl production from carbohydrates and additional chemical modification of proteins by advanced glycation end-products (AGEs). Failure to maintain homeostasis and the increase in oxidizable substrate (lipid) alone, rather than oxidative stress, is the likely source of the increase in reactive carbonyl precursors and the resultant ALEs and AGEs in atherosclerosis. Nucleophilic AGE-inhibitors, such as aminoguanidine and pyridoxamine, which trap reactive carbonyls and inhibit the formation of AGEs in diabetes, also trap bioactive lipids and precursors of ALEs in atherosclerosis. These drugs should be effective in retarding the development of atherosclerosis, even in nondiabetic patients.


Journal of Clinical Investigation | 1998

Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.

Moritsugu Shinohara; Paul J. Thornalley; Ida Giardino; Paul J. Beisswenger; Suzanne R. Thorpe; Joelle Onorato; Michael Brownlee

Methylglyoxal (MG), a dicarbonyl compound produced by the fragmentation of triose phosphates, forms advanced glycation endproducts (AGEs) in vitro. Glyoxalase-I catalyzes the conversion of MG to S-D-lactoylglutathione, which in turn is converted to D-lactate by glyoxalase-II. To evaluate directly the effect of glyoxalase-I activity on intracellular AGE formation, GM7373 endothelial cells that stably express human glyoxalase-I were generated. Glyoxalase-I activity in these cells was increased 28-fold compared to neo-transfected control cells (21.80+/-0.1 vs. 0. 76+/-0.02 micromol/min/mg protein, n = 3, P < 0.001). In neo-transfected cells, 30 mM glucose incubation increased MG and D-lactate concentration approximately twofold above 5 MM (35.5+/-5.8 vs. 19.6+/-1.6, P < 0.02, n = 3, and 21.0+/-1.3 vs. 10.0+/-1.2 pmol/ 10(6) cells, n = 3, P < 0.001, respectively). In contrast, in glyoxalase-I-transfected cells, 30 mM glucose incubation did not increase MG concentration at all, while increasing the enzymatic product D-lactate by > 10-fold (18.9+/-3.2 vs. 18.4+/- 5.8, n = 3, P = NS, and 107.1+/-9.0 vs. 9.4+/-0 pmol/10(6) cells, n = 3, P < 0.001, respectively). After exposure to 30 mM glucose, intracellular AGE formation in neo cells was increased 13.6-fold (2.58+/-0.15 vs. 0.19+/-0.03 total absorbance units, n = 3, P < 0.001). Concomitant with increased intracellular AGEs, macromolecular endocytosis by these cells was increased 2.2-fold. Overexpression of glyoxalase-I completely prevented both hyperglycemia-induced AGE formation and increased macromolecular endocytosis.


Diabetes | 1994

Glycation, Glycoxidation, and Cross-Linking of Collagen by Glucose: Kinetics, Mechanisms, and Inhibition of Late Stages of the Maillard Reaction

Min-Xin Fu; Kevin J. Wells-Knecht; James A. Blackledge; Thorpe J Lyons; Suzanne R. Thorpe; John W. Baynes

The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products Nε-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.


Journal of Clinical Investigation | 1993

Maillard Reaction Products and Their Relation to Complications in Insulin-dependent Diabetes Mellitus

D. R. Mccance; Daniel G. Dyer; John A. Dunn; Karen E. Bailie; Suzanne R. Thorpe; John W. Baynes; Timothy J. Lyons

Glycation, oxidation, and browning of proteins have all been implicated in the development of diabetic complications. We measured the initial Amadori adduct, fructoselysine (FL); two Maillard products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine; and fluorescence (excitation = 328 nm, emission = 378 nm) in skin collagen from 39 type 1 diabetic patients (aged 41.5 +/- 15.3 [17-73] yr; duration of diabetes 17.9 +/- 11.5 [0-46] yr, [mean +/- SD, range]). The measurements were related to the presence of background (n = 9) or proliferative (n = 16) retinopathy; early nephropathy (24-h albumin excretion rate [AER24] > or = 20 micrograms/min; n = 9); and limited joint mobility (LJM; n = 20). FL, CML, pentosidine, and fluorescence increased progressively across diabetic retinopathy (P < 0.05, P < 0.001, P < 0.05, P < 0.01, respectively). FL, CML, pentosidine, and fluorescence were also elevated in patients with early nephropathy (P < 0.05, P < 0.001, P < 0.01, P < 0.01, respectively). There was no association with LJM. Controlling for age, sex, and duration of diabetes using logistic regression, FL and CML were independently associated with retinopathy (FL odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.01-1.12, P < 0.05; CML OR = 6.77, 95% CI = 1.33-34.56, P < 0.05) and with early nephropathy (FL OR = 1.05, 95% CI = 1.01-1.10, P < 0.05; CML OR = 13.44, 95% CI = 2.00-93.30, P < 0.01). The associations between fluorescence and retinopathy and between pentosidine and nephropathy approached significance (P = 0.05). These data show that FL and Maillard products in skin correlate with functional abnormalities in other tissues and suggest that protein glycation and oxidation (glycoxidation) may be implicated in the development of diabetic retinopathy and early nephropathy.


Journal of Clinical Investigation | 1999

The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation

Melissa M. Anderson; Jesús R. Requena; Jan R. Crowley; Suzanne R. Thorpe; Jay W. Heinecke

Reactive aldehydes derived from reducing sugars and peroxidation of lipids covalently modify proteins and may contribute to oxidative tissue damage. We recently described another mechanism for generating reactive aldehydes from free alpha-amino acids. The pathway begins with myeloperoxidase, a heme enzyme secreted by activated neutrophils. Conversion of alpha-amino acids to aldehydes requires hypochlorous acid (HOCl), formed from H2O2 and chloride by myeloperoxidase. When L-serine is the substrate, HOCl generates high yields of glycolaldehyde. We now demonstrate that a model protein, ribonuclease A (RNase A), exposed to free L-serine and HOCl exhibits the biochemical hallmarks of advanced glycation end (AGE) products -- browning, increased fluorescence, and cross-linking. Furthermore, Nepsilon-(carboxymethyl)lysine (CML), a chemically well-characterized AGE product, was generated on RNase A when it was exposed to reagent HOCl-serine, the myeloperoxidase-H2O2-chloride system plus L-serine, or activated human neutrophils plus L-serine. CML production by neutrophils was inhibited by the H2O2 scavenger catalase and the heme poison azide, implicating myeloperoxidase in the cell-mediated reaction. CML was also generated on RNase A by a myeloperoxidase-dependent pathway when neutrophils were activated in a mixture of amino acids. Under these conditions, we observed both L-serine-dependent and L-serine-independent pathways of CML formation. The in vivo production of glycolaldehyde and other reactive aldehydes by myeloperoxidase may thus play an important pathogenic role by generating AGE products and damaging tissues at sites of inflammation.


Arthritis & Rheumatism | 2002

Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis

Nicole Verzijl; Jeroen DeGroot; Chaya Ben Zaken; Orit Braun-Benjamin; Alice Maroudas; Ruud A. Bank; Joe Mizrahi; Casper G. Schalkwijk; Suzanne R. Thorpe; John W. Baynes; Johannes W. J. Bijlsma; Floris P. J. G. Lafeber; J.M. TeKoppele

OBJECTIVE Age is an important risk factor for osteoarthritis (OA). During aging, nonenzymatic glycation results in the accumulation of advanced glycation end products (AGEs) in cartilage collagen. We studied the effect of AGE crosslinking on the stiffness of the collagen network in human articular cartilage. METHODS To increase AGE levels, human adult articular cartilage was incubated with threose. The stiffness of the collagen network was measured as the instantaneous deformation (ID) of the cartilage and as the change in tensile stress in the collagen network as a function of hydration (osmotic stress technique). AGE levels in the collagen network were determined as: Nepsilon-(carboxy[m]ethyl)lysine, pentosidine, amino acid modification (loss of arginine and [hydroxy-]lysine), AGE fluorescence (360/460 nm), and digestibility by bacterial collagenase. RESULTS Incubation of cartilage with threose resulted in a dose-dependent increase in AGEs and a concomitant decrease in ID (r = -0.81, P < 0.001; up to a 40% decrease at 200 mM threose), i.e., increased stiffness, which was confirmed by results from the osmotic stress technique. The decreased ID strongly correlated with AGE levels (e.g., AGE fluorescence r = -0.81, P < 0.0001). Coincubation with arginine or lysine (glycation inhibitors) attenuated the threose-induced decrease in ID (P < 0.05). CONCLUSION Increasing cartilage AGE crosslinking by in vitro incubation with threose resulted in increased stiffness of the collagen network. Increased stiffness by AGE crosslinking may contribute to the age-related failure of the collagen network in human articular cartilage to resist damage. Thus, the age-related accumulation of AGE crosslinks presents a putative molecular mechanism whereby age is a predisposing factor for the development of OA.


Journal of Biological Chemistry | 1998

Role of the Maillard Reaction in Aging of Tissue Proteins ADVANCED GLYCATION END PRODUCT-DEPENDENT INCREASE IN IMIDAZOLIUM CROSS-LINKS IN HUMAN LENS PROTEINS

Elisabeth Brinkmann Frye; Thorsten P. Degenhardt; Suzanne R. Thorpe; John W. Baynes

Dicarbonyl compounds such as glyoxal and methylglyoxal are reactive dicarbonyl intermediates in the nonenzymatic browning and cross-linking of proteins during the Maillard reaction. We describe here the quantification of glyoxal and methylglyoxal-derived imidazolium cross-links in tissue proteins. The imidazolium salt cross-links, glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine dimer (MOLD), were measured by liquid chromatography/mass spectrometry and were present in lens protein at concentrations of 0.02–0.2 and 0.1–0.8 mmol/mol of lysine, respectively. The lens concentrations of GOLD and MOLD correlated significantly with one another and also increased with lens age. GOLD and MOLD were present at significantly higher concentrations than the fluorescent cross-links pentosidine and dityrosine, identifying them as major Maillard reaction cross-links in lens proteins. Like theN-carboxy-alkyllysinesN ε-(carboxymethyl)lysine andN ε-(carboxyethyl)lysine, these cross-links were also detected at lower concentrations in human skin collagen and increased with age in collagen. The presence of GOLD and MOLD in tissue proteins implicates methylglyoxal and glyoxal, either free or protein-bound, as important precursors of protein cross-links formed during Maillard reactions in vivo during aging and in disease.


Diabetes | 2008

Inhibition of NADPH Oxidase Prevents Advanced Glycation End Product–Mediated Damage in Diabetic Nephropathy Through a Protein Kinase C-α–Dependent Pathway

Vicki Thallas-Bonke; Suzanne R. Thorpe; Melinda T. Coughlan; Kei Fukami; Felicia Y.T. Yap; Karly C. Sourris; Sally A. Penfold; Leon A. Bach; Mark E. Cooper; Josephine M. Forbes

OBJECTIVE—Excessive production of reactive oxygen species (ROS) via NADPH oxidase has been implicated in the pathogenesis of diabetic nephropathy. Since NADPH oxidase activation is closely linked to other putative pathways, its interaction with changes in protein kinase C (PKC) and increased advanced glycation was examined. RESEARCH DESIGN AND METHODS—Streptozotocin-induced diabetic or nondiabetic Sprague Dawley rats were followed for 32 weeks, with groups randomized to no treatment or the NADPH oxidase assembly inhibitor apocynin (15 mg · kg−1 · day−1; weeks 16–32). Complementary in vitro studies were performed in which primary rat mesangial cells, in the presence and absence of advanced glycation end products (AGEs)-BSA, were treated with either apocynin or the PKC-α inhibitor Ro-32-0432. RESULTS—Apocynin attenuated diabetes-associated increases in albuminuria and glomerulosclerosis. Circulating, renal cytosolic, and skin collagen–associated AGE levels in diabetic rats were not reduced by apocynin. Diabetes-induced translocation of PKC, specifically PKC-α to renal membranes, was associated with increased NADPH-dependent superoxide production and elevated renal, serum, and urinary vascular endothelial growth factor (VEGF) concentrations. In both diabetic rodents and in AGE-treated mesangial cells, blockade of NADPH oxidase or PKC-α attenuated cytosolic superoxide and PKC activation and increased VEGF. Finally, renal extracellular matrix accumulation of fibronectin and collagen IV was decreased by apocynin. CONCLUSIONS—In the context of these and previous findings by our group, we conclude that activation of NADPH oxidase via phosphorylation of PKC-α is downstream of the AGE–receptor for AGE interaction in diabetic renal disease and may provide a novel therapeutic target for diabetic nephropathy.

Collaboration


Dive into the Suzanne R. Thorpe's collaboration.

Top Co-Authors

Avatar

John W. Baynes

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Lyons

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Nathan L. Alderson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan W. Stitt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Jonathan W. C. Brock

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús R. Requena

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Daniel G. Dyer

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

John A. Dunn

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge