Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne Scarlata is active.

Publication


Featured researches published by Suzanne Scarlata.


Biophysical Journal | 1995

Theory and application of fluorescence homotransfer to melittin oligomerization.

Loren W. Runnels; Suzanne Scarlata

Fluorescence homotransfer (electronic energy transfer between identical fluorophores) has the potential to quantitate the number of subunits in membrane protein oligomers. Homotransfer strongly depolarizes fluorescence emission as a result of intermolecular excitation energy exchange between an initially excited, oriented molecule and a randomly oriented neighbor. We have theoretically treated fluorescein labeled subunits in an oligomer as a cluster of molecules that can exchange excitation energy back and forth among the subunits within that group. We find that the larger the number of subunits, the more depolarized is the emission. The general equations to calculate the expected anisotropy for complexes composed of varying numbers of labeled subunits are presented. Self-quenching of fluorophores, orientation, and changes in lifetime are also discussed and/or considered. To test this theory, we have specifically labeled melittin on its N-terminal with fluorescein and monitored its monomer to tetramer equilibrium both in solution and in lipid bilayers. The calculated anisotropies are close to the experimental values when non-fluorescent fluorescein dimers are taken into account. Our results show that homotransfer may be a promising method to study membrane-protein oligomerization.


The FASEB Journal | 2009

Novel endogenous peptide agonists of cannabinoid receptors

Ivone Gomes; Julia S. Grushko; Urszula Golebiewska; Sascha Hoogendoorn; Achla Gupta; Andrea S. Heimann; Emer S. Ferro; Suzanne Scarlata; Lloyd D. Fricker; Lakshmi A. Devi

Hemopressin (Hp), a 9‐residue α‐hemoglobin‐derived peptide, was previously reported to function as a CB1 cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N‐terminally extended forms of Hp containing either three (RVD‐Hpa) or two (VD‐Hpa) additional amino acids, as well as a β‐hemoglobin‐derived peptide with sequence similarity to that of hemopressin (VD‐Hpβ). Characterization of the α‐hemoglobin‐derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB1 cannabinoid receptor antagonist, both RVD‐Hpa and VD‐Hpα function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca2+ indicate that these peptides activate a signal transduction pathway distinct from that activated by the endocannabinoid, 2‐arachidonoylglycerol, or the classic CB1 agonist, Hu‐210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB1 receptor is involved in the integration of signals from both lipid‐ and peptide‐derived signaling molecules.—Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020–3029 (2009). www.fasebj.org


Biochimica et Biophysica Acta | 2003

Role of HIV-1 Gag domains in viral assembly

Suzanne Scarlata; Carol A. Carter

After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.


Biophysical Journal | 2001

HIV-1 Capsid Protein Forms Spherical (Immature-Like) and Tubular (Mature-Like) Particles in Vitro: Structure Switching by pH-induced Conformational Changes

Lorna S. Ehrlich; Tianbo Liu; Suzanne Scarlata; Benjamin Chu; Carol A. Carter

The viral genome and replicative enzymes of the human immunodeficiency virus are encased in a shell consisting of assembled mature capsid protein (CA). The core shell is a stable, effective protective barrier, but is also poised for dissolution on cue to allow transmission of the viral genome into its new host. In this study, static light scattering (SLS) and dynamic light scattering (DLS) were used to examine the entire range of the CA protein response to an environmental cue (pH). The CA protein assembled tubular structures as previously reported but also was capable of assembling spheres, depending on the pH of the protein solution. The switch from formation of one to the other occurred within a very narrow physiological pH range (i.e., pH 7.0 to pH 6.8). Below this range, only dimers were detected. Above this range, the previously described tubular structures were detected. The ability of the CA protein to form a spherical structure that is detectable by DLS but not by electron microscopy indicates that some assemblages are inherently sensitive to perturbation. The dimers in equilibrium with these assemblages exhibited distinct conformations: Dimers in equilibrium with the spherical form exhibited a compact conformation. Dimers in equilibrium with the rod-like form had an extended conformation. Thus, the CA protein possesses the inherent ability to form metastable structures, the morphology of which is regulated by an environmentally-sensitive molecular switch. Such metastable structures may exist as transient intermediates during the assembly and/or disassembly of the virus core.


Journal of Biological Chemistry | 2007

Signaling through a G Protein-coupled Receptor and Its Corresponding G Protein Follows a Stoichiometrically Limited Model

Finly Philip; Parijat Sengupta; Suzanne Scarlata

The bradykinin receptor is a G protein-coupled receptor (GPCR) that is coupled to the Gαq family of heterotrimeric G proteins. In general, a GPCR can exert intracellular signals either by transiently associating with multiple diffusing G protein subunits or by activating a G protein that is stably bound to the receptor, thus generating a signal that is limited by the stoichiometry of the complex. Here we have distinguished between these models by monitoring the association of type 2 bradykinin receptor (B2R) and the Gαq/Gβγ heterotrimer in living human embryonic kidney 293 cells expressing fluorescent-tagged proteins. Stable B2R-Gαq·Gβγ complexes are observed in resting cells by fluorescence resonance energy transfer from either Gαq-eCFP or eCFP-Gβγ to B2R-eYFP. Stimulating the cells with bradykinin causes detachment of B2R from the G protein subunits as the receptor internalizes into early endosomes, with a corresponding elimination of B2R-G protein fluorescence resonance energy transfer because Gαq and its associated Gβγ remain on the plasma membrane. Single point and scanning fluorescence correlation spectroscopy measurements show that a portion of B2R molecules diffuses with a mobility corresponding to dimers or small oligomers, whereas a second fraction diffuses in higher order molecular assemblies. Our studies support a model in which receptors are pre-coupled with their corresponding G proteins in the basal state of cells thereby limiting the response to an external signal to a defined stoichiometry that allows for a rapid and directed cellular response.


Molecular Biology of the Cell | 2011

Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages

Urszula Golebiewska; Jason G. Kay; Thomas A. Masters; Sergio Grinstein; Wonpil Im; Richard W. Pastor; Suzanne Scarlata; Stuart McLaughlin

Fluorescence correlation spectroscopy and fluorescence recovery after photobleaching measurements on macrophages injected with fluorescent phosphatidylinositol 4,5-bisphosphate (PIP2) suggest that a barrier impedes the diffusion of plasma membrane PIP2 into and out of forming phagosomes.


Methods in Enzymology | 2008

Fluorescence approaches to quantifying biomolecular interactions.

Catherine A. Royer; Suzanne Scarlata

This review is conceived as an introductory text to aid in the understanding and conception of fluorescence-based measurements of biomolecular interactions. The major fluorescence observables are introduced briefly. Next, the criteria that are involved in the choice of the fluorescent probe are discussed in terms of their advantages and disadvantages for different types of experiments. The last sections deal with the experimental design for fluorescence-based assays aimed at detecting different types of biomolecular interactions. Included in our examples are protein-ligand interactions, protein-nucleic acid interactions, aqueous phase protein-protein interactions and protein interactions in or at the cell membrane. We hope that this introduction will be of use to students and researchers considering the use of fluorescence in their work.


Biochimica et Biophysica Acta | 1993

Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids

Guillermo Montich; Suzanne Scarlata; Stuart McLaughlin; Renate Lehrmann; Joachim Seelig

We measured the binding of the peptide acetyl-Trp-Lys7-amide to membranes formed from mixtures of the zwitterionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) and the acidic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (PG). Direct filtration and equilibrium dialysis measurements demonstrate that binding increases sigmoidally with the mole fraction of PG as predicted from a simple Gouy-Chapman/mass action theoretical model. We used these measurements to calibrate two binding assays, one based on the increase in Trp fluorescence that occurs when the peptide binds to the membrane, the other on the quenching of Trp fluorescence that occurs when the peptide binds to membranes containing fluorescent lipids. Both fluorescence assays demonstrate that binding does not depend strongly on temperature, which suggests the enthalpy change, delta H, is small. Calorimetric measurements demonstrate this directly for the analogous basic peptide Lys5: delta H congruent to +1 kcal/mol for the binding of Lys5 to sonicated phospholipid vesicles and delta H congruent to 0 kcal/mol for its binding to large unilamellar vesicles. Thus, the decrease in the free energy that occurs when these peptides bind to the membrane is due to a positive change in the entropy of the system. Fluorescence measurements demonstrate the binding of the Trp-containing peptide to 4:1 PC/PG membranes is independent of pressure up to 2 kbar, which suggests that binding occurs without a significant change in volume.


Cell | 2013

Decoding information in cell shape.

Padmini Rangamani; Azi Lipshtat; Evren U. Azeloglu; Rhodora C. Calizo; Mufeng Hu; Saba Ghassemi; James Hone; Suzanne Scarlata; Susana R. Neves; Ravi Iyengar

Shape is an indicator of cell health. But how is the information in shape decoded? We hypothesize that decoding occurs by modulation of signaling through changes in plasma membrane curvature. Using analytical approaches and numerical simulations, we studied how elongation of cell shape affects plasma membrane signaling. Mathematical analyses reveal transient accumulation of activated receptors at regions of higher curvature with increasing cell eccentricity. This distribution of activated receptors is periodic, following the Mathieu function, and it arises from local imbalance between reaction and diffusion of soluble ligands and receptors in the plane of the membrane. Numerical simulations show that transient microdomains of activated receptors amplify signals to downstream protein kinases. For growth factor receptor pathways, increasing cell eccentricity elevates the levels of activated cytoplasmic Src and nuclear MAPK1,2. These predictions were experimentally validated by changing cellular eccentricity, showing that shape is a locus of retrievable information storage in cells.


Archives of Biochemistry and Biophysics | 1985

High-pressure investigations of cytochrome P-450 spin and substrate binding equilibria.

Mark T. Fisher; Suzanne Scarlata; Stephen G. Sligar

The effects of high pressure (1-2000 bar) on the spin state and substrate binding equilibria in cytochrome P-450 have been determined. The high-spin (S = 5/2) to low spin (S = 1/2) transition of the ferric hemoprotein was monitored by uv-visible spectroscopy at various substrate concentrations. Increasing hydrostatic pressure on a sample of substrate-bound cytochrome P-450 resulted in a decrease in the high-spin fraction as monitored by a Soret maxima at 391 nm and an increase in the low-spin 417-nm region of the spectrum. These pressure-induced optical changes were totally reversible for all pressures below 800 bar and were found to correspond to simple substrate dissociation from the enzyme. High levels of the normally metabolized substrate, d-camphor, corresponding to a 99.9% saturation of the hemoprotein active site (50 mM Tris-Cl, 100 mM KCl, pH 7.2) completely prevented the pressure-induced high-spin to low-spin transition that is observed at less than saturating substrate concentrations. A gradual increase in the formation of the inactive P-420 form of the cytochrome was noted if the pressure of the sample was increased above 800 bar. These pressure-linked spectral changes were used to determine the microscopic volume change accompanying substrate binding, which was found to be -47.0 +/- 2 ml/mol (pH 7.2) which represents a substantial change for a ligand dissociation reaction. The observed volume change for camphor binding decreases to -30.6 +/- 2 ml/mol at pH 6.0, suggesting the involvement of a linked proton equilibrium. Various substrate analogs of camphor induce varying degrees of low-spin to high-spin shift upon binding to ferric cytochrome P-450 (3). The volume changes for the dissociation of these substrates were very similar to those obtained with camphor. The conformational changes associated with a shift from high- to low-spin ferric iron appear to be small in comparison to the overall macroscopic changes in volume accompanying substrate binding to the enzyme.

Collaboration


Dive into the Suzanne Scarlata's collaboration.

Top Co-Authors

Avatar

Urszula Golebiewska

Queensborough Community College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shriya Sahu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge