Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzy Comhair is active.

Publication


Featured researches published by Suzy Comhair.


american thoracic society international conference | 2009

Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program

Wendy C. Moore; Deborah A. Meyers; Sally E. Wenzel; W. Gerald Teague; H. Li; Xingnan Li; Ralph B. D'Agostino; Mario Castro; Douglas Curran-Everett; Anne M. Fitzpatrick; Benjamin Gaston; Nizar N. Jarjour; Ronald L. Sorkness; William J. Calhoun; Kian Fan Chung; Suzy Comhair; Raed A. Dweik; Elliot Israel; Stephen P. Peters; William W. Busse; Serpil C. Erzurum; Eugene R. Bleecker

RATIONALE The Severe Asthma Research Program cohort includes subjects with persistent asthma who have undergone detailed phenotypic characterization. Previous univariate methods compared features of mild, moderate, and severe asthma. OBJECTIVES To identify novel asthma phenotypes using an unsupervised hierarchical cluster analysis. METHODS Reduction of the initial 628 variables to 34 core variables was achieved by elimination of redundant data and transformation of categorical variables into ranked ordinal composite variables. Cluster analysis was performed on 726 subjects. MEASUREMENTS AND MAIN RESULTS Five groups were identified. Subjects in Cluster 1 (n = 110) have early onset atopic asthma with normal lung function treated with two or fewer controller medications (82%) and minimal health care utilization. Cluster 2 (n = 321) consists of subjects with early-onset atopic asthma and preserved lung function but increased medication requirements (29% on three or more medications) and health care utilization. Cluster 3 (n = 59) is a unique group of mostly older obese women with late-onset nonatopic asthma, moderate reductions in FEV(1), and frequent oral corticosteroid use to manage exacerbations. Subjects in Clusters 4 (n = 120) and 5 (n = 116) have severe airflow obstruction with bronchodilator responsiveness but differ in to their ability to attain normal lung function, age of asthma onset, atopic status, and use of oral corticosteroids. CONCLUSIONS Five distinct clinical phenotypes of asthma have been identified using unsupervised hierarchical cluster analysis. All clusters contain subjects who meet the American Thoracic Society definition of severe asthma, which supports clinical heterogeneity in asthma and the need for new approaches for the classification of disease severity in asthma.


The FASEB Journal | 2004

Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension

Weiling Xu; F. Takao Kaneko; Shuo Zheng; Suzy Comhair; Allison J. Janocha; Tannishia Goggans; Frederik B. J. M. Thunnissen; Carol Farver; Stanley L. Hazen; Constance Jennings; Raed A. Dweik; Alejandro C. Arroliga; Serpil C. Erzurum

Pulmonary arterial hypertension (PAH), a fatal disease of unknown etiology characterized by impaired regulation of pulmonary hemodynamics and vascular growth, is associated with low levels of pulmonary nitric oxide (NO). Based upon its critical role in mediating vasodilation and cell growth, decrease of NO has been implicated in the pathogenesis of PAH. We evaluated mechanisms for low NO and pulmonary hypertension, including NO synthases (NOS) and factors regulating NOS activity, i.e. the substrate arginine, arginase expression and activity, and endogenous inhibitors of NOS in patients with PAH and healthy controls. PAH lungs had normal NOS I–III expression, but substrate arginine levels were inversely related to pulmonary artery pressures. Activity of arginase, an enzyme that regulates NO biosynthesis through effects on arginine, was higher in PAH serum than in controls, with high‐level arginase expression localized by immunostaining to pulmonary endothelial cells. Further, pulmonary artery endothelial cells derived from PAH lung had higher arginase II expression and produced lower NO than control cells in vitro. Thus, substrate availability affects NOS activity and vasodilation, implicating arginase II and alterations in arginine metabolic pathways in the pathophysiology of PAH.


Free Radical Biology and Medicine | 2003

Oxidative and nitrosative events in asthma

Athena A Andreadis; Stanley L. Hazen; Suzy Comhair; Serpil C. Erzurum

Asthma affects over 15 million individuals in the United States, with over 1.5 million emergency room visits, 500,000 hospitalizations, and 5500 deaths each year, many of which are children. Airway inflammation is the proximate cause of the recurrent episodes of airflow limitation in asthma. Research applying molecular biology, chemistry, and cell biology to human asthma and model systems of asthma over the last decade has revealed that numerous biologically active proinflammatory mediators lead to increased production of reactive oxygen species (ROS) and the gaseous molecule nitric oxide (NO). Persistently increased ROS and NO in asthma lead to reactive nitrogen species (RNS) formation and subsequent oxidation and nitration of proteins, which may cause alterations in protein function that are biologically relevant to airway injury/inflammation. Eosinophil peroxidase and myeloperoxidase, leukocyte-derived enzymes, amplify oxidative events and are another enzymatic source of NO-derived oxidants and nitrotyrosine formation in asthma. Concomitant with increased generation of oxidative and nitrosative molecules in asthma, loss of protective antioxidant defense, specifically superoxide dismutase (SOD), contributes to the overall toxic environment of the asthmatic airway. This review discusses the rapidly accruing data linking oxidative and nitrosative events as critical participants in the acute and chronic inflammation of asthmatic airways.


Journal of Immunology | 2000

Molecular mechanisms of increased nitric oxide (NO) in asthma: Evidence for transcriptional and post-translational regulation of NO synthesis

Fuhua H. Guo; Suzy Comhair; Shuo Zheng; Raed A. Dweik; N. Tony Eissa; Mary Jane Thomassen; William J. Calhoun; Serpil C. Erzurum

Evidence supporting increased nitric oxide (NO) in asthma is substantial, although the cellular and molecular mechanisms leading to increased NO are not known. Here, we provide a clear picture of the events regulating NO synthesis in the human asthmatic airway in vivo. We show that human airway epithelium has abundant expression of NO synthase II (NOSII) due to continuous transcriptional activation of the gene in vivo. Individuals with asthma have higher than normal NO concentrations and increased NOSII mRNA and protein due to transcriptional regulation through activation of Stat1. NOSII mRNA expression decreases in asthmatics receiving inhaled corticosteroid, treatment effective in reducing inflammation in asthmatic airways. In addition to transcriptional mechanisms, post-translational events contribute to increased NO synthesis. Specifically, high output production of NO is fueled by a previously unsuspected increase in the NOS substrate, l-arginine, in airway epithelial cells of asthmatic individuals. Finally, nitration of proteins in airway epithelium provide evidence of functional consequences of increased NO. In conclusion, these studies define multiple mechanisms that function coordinately to support high level NO synthesis in the asthmatic airway. These findings represent a crucial cornerstone for future therapeutic strategies aimed at regulating NO synthesis in asthma.


Journal of Immunology | 2001

Eosinophils Are a Major Source of Nitric Oxide-Derived Oxidants in Severe Asthma: Characterization of Pathways Available to Eosinophils for Generating Reactive Nitrogen Species

Jennifer C. MacPherson; Suzy Comhair; Serpil C. Erzurum; Dennis Klein; Mary F. Lipscomb; Mani S. Kavuru; Michael Samoszuk; Stanley L. Hazen

Eosinophil recruitment and enhanced production of NO are characteristic features of asthma. However, neither the ability of eosinophils to generate NO-derived oxidants nor their role in nitration of targets during asthma is established. Using gas chromatography-mass spectrometry we demonstrate a 10-fold increase in 3-nitrotyrosine (NO2Y) content, a global marker of protein modification by reactive nitrogen species, in proteins recovered from bronchoalveolar lavage of severe asthmatic patients (480 ± 198 μmol/mol tyrosine; n = 11) compared with nonasthmatic subjects (52.5 ± 40.7 μmol/mol tyrosine; n = 12). Parallel gas chromatography-mass spectrometry analyses of bronchoalveolar lavage proteins for 3-bromotyrosine (BrY) and 3-chlorotyrosine (ClY), selective markers of eosinophil peroxidase (EPO)- and myeloperoxidase-catalyzed oxidation, respectively, demonstrated a dramatic preferential formation of BrY in asthmatic (1093 ± 457 μmol BrY/mol tyrosine; 161 ± 88 μmol ClY/mol tyrosine; n = 11 each) compared with nonasthmatic subjects (13 ± 14.5 μmol BrY/mol tyrosine; 65 ± 69 μmol ClY/mol tyrosine; n = 12 each). Bronchial tissue from individuals who died of asthma demonstrated the most intense anti-NO2Y immunostaining in epitopes that colocalized with eosinophils. Although eosinophils from normal subjects failed to generate detectable levels of NO, NO2−, NO3−, or NO2Y, tyrosine nitration was promoted by eosinophils activated either in the presence of physiological levels of NO2− or an exogenous NO source. At low, but not high (e.g., >2 μM/min), rates of NO flux, EPO inhibitors and catalase markedly attenuated aromatic nitration. These results identify eosinophils as a major source of oxidants during asthma. They also demonstrate that eosinophils use distinct mechanisms for generating NO-derived oxidants and identify EPO as an enzymatic source of nitrating intermediates in eosinophils.


Proceedings of the National Academy of Sciences of the United States of America | 2001

NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response

Raed A. Dweik; Suzy Comhair; Benjamin Gaston; Frederik B. J. M. Thunnissen; Carol Farver; Mary Jane Thomassen; Mani S. Kavuru; Jeffrey P. Hammel; Husam M. Abu-Soud; Serpil C. Erzurum

A wealth of evidence supports increased NO (NO⋅) in asthma, but its roles are unknown. To investigate how NO participates in inflammatory airway events in asthma, we measured NO⋅ and NO⋅ chemical reaction products [nitrite, nitrate, S-nitrosothiols (SNO), and nitrotyrosine] before, immediately and 48 h after bronchoscopic antigen (Ag) challenge of the peripheral airways in atopic asthmatic individuals and nonatopic healthy controls. Strikingly, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} was the only NO⋅ derivative to increase during the immediate Ag-induced asthmatic response and continued to increase over 2-fold at 48 h after Ag challenge in contrast to controls [P < 0.05]. NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} was not affected by Ag challenge at 10 min or 48 h after Ag challenge. Although SNO was not detectable in asthmatic airways at baseline or immediately after Ag, SNO increased during the late response to levels found in healthy controls. A model of NO⋅ dynamics derived from the current findings predicts that NO⋅ may have harmful effects through formation of peroxynitrite, but also subserves an antioxidant role by consuming reactive oxygen species during the immediate asthmatic response, whereas nitrosylation during the late asthmatic response generates SNO, safe reservoirs for removal of toxic NO⋅ derivatives.


Nature Medicine | 2013

An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension

Jongmin Kim; Yujung Kang; Yoko Kojima; Janet K. Lighthouse; Xiaoyue Hu; Micheala A. Aldred; Danielle L. McLean; Hyekyung Park; Suzy Comhair; Daniel M. Greif; Serpil C. Erzurum; Hyung J. Chun

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with obliteration of pulmonary arterioles and formation of plexiform lesions composed of hyperproliferative endothelial and vascular smooth-muscle cells. Here we describe a microRNA (miRNA)-dependent association between apelin (APLN) and fibroblast growth factor 2 (FGF2) signaling in pulmonary artery endothelial cells (PAECs). APLN deficiency in these cells led to increased expression of FGF2 and its receptor FGFR1 as a consequence of decreased expression of miR-424 and miR-503, which directly target FGF2 and FGFR1. miR-424 and miR-503 were downregulated in PAH, exerted antiproliferative effects in PAECs and inhibited the capacity of PAEC-conditioned medium to induce the proliferation of pulmonary artery smooth-muscle cells. Reconstitution of miR-424 and miR-503 in vivo ameliorated pulmonary hypertension in experimental models. These studies identify an APLN-dependent miRNA-FGF signaling axis needed for the maintenance of pulmonary vascular homeostasis.


American Journal of Respiratory and Critical Care Medicine | 2010

Use of Exhaled Nitric Oxide Measurement to Identify a Reactive, at-Risk Phenotype among Patients with Asthma

Raed A. Dweik; Ronald L. Sorkness; Sally Wenzel; Jeffrey P. Hammel; Douglas Curran-Everett; Suzy Comhair; Eugene R. Bleecker; William W. Busse; William J. Calhoun; Mario Castro; Kian Fan Chung; Elliot Israel; Nizar N. Jarjour; Wendy C. Moore; Stephen Peters; Gerald Teague; Benjamin Gaston; Serpil C. Erzurum

RATIONALE Exhaled nitric oxide (Fe(NO)) is a biomarker of airway inflammation in mild to moderate asthma. However, whether Fe(NO) levels are informative regarding airway inflammation in patients with severe asthma, who are refractory to conventional treatment, is unknown. Here, we hypothesized that classification of severe asthma based on airway inflammation as defined by Fe(NO) levels would identify a more reactive, at-risk asthma phenotype. METHODS Fe(NO) and major features of asthma, including airway inflammation, airflow limitation, hyperinflation, hyperresponsiveness, and atopy, were determined in 446 individuals with various degrees of asthma severity (175 severe, 271 non-severe) and 49 healthy subjects enrolled in the Severe Asthma Research Program. MEASUREMENTS AND MAIN RESULTS Fe(NO) levels were similar among patients with severe and non-severe asthma. The proportion of individuals with high Fe(NO) levels (>35 ppb) was the same (40%) among groups despite greater corticosteroid therapy in severe asthma. All patients with asthma and high Fe(NO) had more airway reactivity (maximal reversal in response to bronchodilator administration and by methacholine challenge), more evidence of allergic airway inflammation (sputum eosinophils), more evidence of atopy (positive skin tests, higher serum IgE and blood eosinophils), and more hyperinflation, but decreased awareness of their symptoms. High Fe(NO) identified those patients with severe asthma characterized by the greatest airflow obstruction and hyperinflation and most frequent use of emergency care. CONCLUSIONS Grouping of asthma by Fe(NO) provides an independent classification of asthma severity, and among patients with severe asthma identifies the most reactive and worrisome asthma phenotype.


The Lancet | 2000

Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response.

Suzy Comhair; Percy R. Bhathena; Raed A. Dweik; Mani S. Kavuru; Serpil C. Erzurum

Loss of superoxide dismutase activity occurs within minutes of an acute asthmatic response to segmental antigen instillation into the lung of individuals with atopic asthma. Decreased activity undoubtedly contributes to airway inflammation and injury through increased formation of reactive oxygen and nitrogen species, and suggests that enrichment of lung antioxidants is therapeutic for asthma.


American Journal of Pathology | 2005

Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity

Suzy Comhair; Weiling Xu; Sudakshina Ghosh; Frederik B. J. M. Thunnissen; Alexandru Almasan; William J. Calhoun; Allison J. Janocha; Lemin Zheng; Stanley L. Hazen; Serpil C. Erzurum

Airway hyperresponsiveness and remodeling are defining features of asthma. We hypothesized that impaired superoxide dismutase (SOD) antioxidant defense is a primary event in the pathophysiology of hyperresponsiveness and remodeling that induces apoptosis and shedding of airway epithelial cells. Mechanisms leading to apoptosis were studied in vivo and in vitro. Asthmatic lungs had increased apoptotic epithelial cells compared to controls as determined by terminal dUTP nick-end labeling-positive cells. Apoptosis was confirmed by the finding that caspase-9 and -3 and poly (ADP-ribose) polymerase were cleaved. On the basis that SOD inactivation triggers cell death and low SOD levels occur in asthma, we tested whether SOD inactivation plays a role in airway epithelial cell death. SOD inhibition increased cell death and cleavage/activation of caspases in bronchial epithelial cells in vitro. Furthermore, oxidation and nitration of MnSOD were identified in the asthmatic airway, correlating with physiological parameters of asthma severity. These findings link oxidative and nitrative stress to loss of SOD activity and downstream events that typify asthma, including apoptosis and shedding of the airway epithelium and hyperresponsiveness.

Collaboration


Dive into the Suzy Comhair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Gaston

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Castro

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge