Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzzanne Owen is active.

Publication


Featured researches published by Suzzanne Owen.


The Journal of Infectious Diseases | 2009

Nasal‐Associated Lymphoid Tissue and Olfactory Epithelium as Portals of Entry for Burkholderia pseudomallei in Murine Melioidosis

Suzzanne Owen; Michael R. Batzloff; Fatemeh Chehrehasa; Adrian Cuda Banda Meedeniya; Yveth Casart; Carie-Anne Logue; Robert G. Hirst; Ian R. Peak; Alan Mackay-Sim; Ifor R. Beacham

BACKGROUND Burkholderia pseudomallei, the causative agent of melioidosis, is generally considered to be acquired via inhalation of dust or water droplets from the environment. In this study, we show that infection of the nasal mucosa is potentially an important portal of entry in melioidosis. METHODS After intranasal inoculation of mice, infection was monitored by bioluminescence imaging and by immunohistological analysis of coronal sections. The bacterial loads in organ and tissue specimens were also monitored. RESULTS Bioluminescence imaging showed colonization and replication in the nasal cavity, including the nasal-associated lymphoid tissue (NALT). Analysis of coronal sections and immunofluorescence microscopy further demonstrated the presence of infection in the respiratory epithelium and the olfactory epithelium (including associated nerve bundles), as well as in the NALT. Of significance, the olfactory epithelium and the brain were rapidly infected before bacteria were detected in blood, and a capsule-deficient mutant infected the brain without significantly infecting blood. CONCLUSIONS These data suggest that the olfactory nerve is the route of entry into the brain and that this route of entry may be paralleled in cases of human neurologic melioidosis. This study focuses attention on the upper respiratory tract as a portal of entry, specifically focusing on NALT as a route for the development of systemic infection via the bloodstream and on the olfactory epithelium as a direct route to the brain.


Mbio | 2014

Burkholderia pseudomallei Penetrates the Brain via Destruction of the Olfactory and Trigeminal Nerves: Implications for the Pathogenesis of Neurological Melioidosis

James Anthony St John; Jenny Ekberg; Samantha J. Dando; Adrian Cuda Banda Meedeniya; Rachel Elizabeth Horton; Michael R. Batzloff; Suzzanne Owen; Stephanie Jane Holt; Ian R. Peak; Glen C. Ulett; Alan Mackay-Sim; Ifor R. Beacham

ABSTRACT Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier. IMPORTANCE Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and we have investigated the ability of the bacteria to migrate along nerves that innervate the nasal cavity and enter the frontal region of the brain by using a mouse model of infection. By generating a mutant strain of B. pseudomallei which is unable to survive in the blood, we show that the bacteria rapidly penetrate the cranial cavity using the olfactory (smell) nerve and the trigeminal (sensory) nerve that line the nasal cavity. Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and we have investigated the ability of the bacteria to migrate along nerves that innervate the nasal cavity and enter the frontal region of the brain by using a mouse model of infection. By generating a mutant strain of B. pseudomallei which is unable to survive in the blood, we show that the bacteria rapidly penetrate the cranial cavity using the olfactory (smell) nerve and the trigeminal (sensory) nerve that line the nasal cavity.


Human Vaccines & Immunotherapeutics | 2015

Vaccination against respiratory Pseudomonas aeruginosa infection

Keith Grimwood; Jennelle M. Kyd; Suzzanne Owen; Helen Maureen Massa; Allan W. Cripps

Respiratory infections caused by Pseudomonas aeruginosa are a major clinical problem globally, particularly for patients with chronic pulmonary disorders, such as those with cystic fibrosis (CF), non-CF bronchiectasis (nCFB) and severe chronic obstructive pulmonary disease (COPD). In addition, critically ill and immunocompromised patients are also at significant risk of P. aeruginosa infection. For almost half a century, research efforts have focused toward development of a vaccine against infections caused by P. aeruginosa, but a licensed vaccine is not yet available. Significant advances in identifying potential vaccine antigens have been made. Immunisations via both the mucosal and systemic routes have been trialled in animal models and their effectiveness in clearing acute infections demonstrated. The challenge for translation of this research to human applications remains, since P. aeruginosa infections in the human respiratory tract can present both as an acute or chronic infection. In addition, immunisation prior to infection may not be possible for many patients with CF, nCFB or COPD. Therefore, development of a therapeutic vaccine provides an alternative approach for treatment of chronic infection. Preliminary animal and human studies suggest that mucosal immunisation may be effective as a therapeutic vaccine against P. aeruginosa respiratory infections. Nevertheless, more research is needed to improve our understanding of the basic biology of P. aeruginosa and the mechanisms needed to upregulate the induction of host immune pathways to prevent infection. Recognition of variability in the host immune responses for a range of patient health conditions at risk from P. aeruginosa infection is also required to support development of a successful vaccine delivery strategy and vaccine. Activation of mucosal immune responses may provide improved efficacy of vaccination for P. aeruginosa during both acute exacerbations and chronic infection.


PLOS ONE | 2013

Quorum Sensing Negatively Regulates Multinucleate Cell Formation during Intracellular Growth of Burkholderia pseudomallei in Macrophage-Like Cells

Rachel Elizabeth Horton; Gary D. Grant; Ben Matthews; Michael R. Batzloff; Suzzanne Owen; Stephanie Kyan; Cameron Flegg; Amanda M. Clark; Glen C. Ulett; Nigel Alexander Morrison; Ian R. Peak; Ifor R. Beacham

Burkholderia pseudomallei is a Gram-negative environmental bacterium and the causative agent of melioidosis, a potentially fatal, acute or chronic disease endemic in the tropics. Acyl homoserine lactone (AHL)-mediated quorum sensing and signalling have been associated with virulence and biofilm formation in numerous bacterial pathogens. In the canonical acyl-homoserine lactone signalling paradigm, AHLs are detected by a response regulator. B. pseudomallei encodes three AHL synthases, encoded by bpsI1, bpsI2 and bpsI3, and five regulator genes. In this study, we mutated the B. pseudomallei AHL synthases individually and in double and triple combination. Five AHLs were detected and quantified by tandem liquid chromatography-mass spectroscopy. The major AHLs produced were N-octanoylhomoserine lactone and N-(3-hydroxy-decanoyl)homoserine lactone, the expression of which depended on bpsI1 and bpsI2, respectively. B. pseudomallei infection of macrophage cells causes cell fusion, leading to multinucleated cells (3 or more nuclei per cell). A triple mutant defective in production of all three AHL synthases was associated with a striking phenotype of massively enhanced host cellular fusion in macrophages. However, neither abrogation of host cell fusion, achieved by mutation of bimA or hcp1, nor enhancement of fusion altered intracellular replication of B. pseudomallei. Furthermore, when tested in murine models of acute melioidosis the AHL synthase mutants were not attenuated for virulence. Collectively, this study identifies important new aspects of the genetic basis of AHL synthesis in B. pseudomallei and the roles of these AHLs in systemic infection and in cell fusion in macrophages for this important human pathogen.


Life Sciences | 2011

Dietary phytoestrogens maintain contractile responses to carbachol with age in the female rat isolated bladder

Suzzanne Owen; Roselyn Barbara Rose'Meyer; Helen Maureen Massa

AIMS Development of urinary incontinence, for many women, occurs following menopause. Dietary phytoestrogens consumed over the long term may affect the contractile function and maintenance of the urinary bladder in post menopausal women. This study examined the muscarinic receptor mediated contractile responses in the rat isolated bladder in response to ovariectomy and long term dietary phytoestrogen consumption. MAIN METHODS Ovariectomised or sham-operated female Wistar rats (8 weeks) were fed either normal rat chow (soy, phytoestrogens) or a non-soy (phytoestrogen free) diet. Bladders were dissected from rats at 12, 24 and 52 weeks of age and placed in 25 ml organ baths filled with McEwans solution. KEY FINDINGS The contractile response to carbachol, in 12 week old female rats did not change as a result of dietary phytoestrogens or ovariectomy (P>0.05). At 24 weeks of age, detrusor muscle strip responses to carbachol from non-soy fed ovariectomised rats were attenuated (P<0.05). At 52 weeks, bladder detrusor strip responses to carbachol were reduced in all treatment groups with the exception of the soy-fed sham operated rats. SIGNIFICANCE These results suggest an age-related reduction in the contractile response of the detrusor to the muscarinic receptor agonist carbachol, which may be prevented by long term dietary phytoestrogen intake.


Reproduction, Fertility and Development | 2017

Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

Svetlana Bivol; Suzzanne Owen; Roselyn Barbara Rose'Meyer

Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.


Naunyn-schmiedebergs Archives of Pharmacology | 2012

Loss of adenosine A2B receptor mediated relaxant responses in the aged female rat bladder; effects of dietary phytoestrogens

Suzzanne Owen; Helen Maureen Massa; Roselyn Barbara Rose'Meyer


Faculty of Health | 2014

Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: Implications for the pathogenesis of neurological melioidosis

J. A. St John; Jenny Ekberg; Samantha J. Dando; Adrian Cuda Banda Meedeniya; Rachel Elizabeth Horton; Michael R. Batzloff; Suzzanne Owen; S. Holt; Ian R. Peak; Glen C. Ulett; Alan Mackay-Sim; Ifor R. Beacham


Australian New Zealand Association of Health Professional Education | 2014

Professional communication during inter-professional undergraduate clinical simulation : Presentation ,performance and patients response.

Suzzanne Owen; Roselyn Barbara Rose'Meyer; Helen Maureen Massa; Creina Anne Mitchell; Julie Margaret Shaw


15th National Nurse Education Conference: Changing Boards | 2014

Clinical role modelling and communication during inter-professional undergraduate clinical simulation.

Suzzanne Owen; Julie Margaret Shaw; Creina Anne Mitchell; Roselyn Barbara Rose'Meyer; Helen Maureen Massa

Collaboration


Dive into the Suzzanne Owen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge