Svante Jonsell
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svante Jonsell.
Nature | 2012
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; P H Donnan; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. J. Nolan
The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
Physical Review Letters | 2010
G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; R. Hayano; Michael E. Hayden; A. J. Humphries; R. Hydomako; Svante Jonsell; L. Kurchaninov; R. Lambo; N. Madsen; S. Menary; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux
We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9xa0K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
Nature | 2016
M. Ahmadi; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; Andrew Emile Charman; S. Eriksson; L. T. Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; A. Ishida; Steve Jones; Svante Jonsell; L. Kurchaninov; N. Madsen; D. Maxwell; J. T. K. McKenna; S. Menary; J. M. Michan
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms– of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q|u2009<u20090.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10−21e for a diverse range of species including H2, He and SF6. Charge–parity–time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Nature Communications | 2014
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; M. Charlton; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa
The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4u2009mm for an average axial electric field of 0.51u2009Vu2009mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects.
New Journal of Physics | 2012
C. Amole; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; L. Kurchaninov; Svante Jonsell; N. Madsen; S. Menary; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
Physics of Plasmas | 2013
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; S. Eriksson; Joel Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; K. Olchanski; A. Olin; P. Pusa; C. Ø. Rasmussen
One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge–parity–time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping y...
Hyperfine Interactions | 2001
Jan Wallenius; Svante Jonsell; Yasushi Kino; Piotr Froelich
AbstractIn a recent experiment performed at PSI, a peak in the time-of-flight distribution of pμ(1s) atoms could be identified with decay of ppμ* molecular ions situated below the 2s threshold, providing 900 eV of kinetic energy to the pμ atom. This finding may be interpreted in terms of the side path model which suggests that metastable muonic molecules may form with high probability in resonant collisions between muonic hydrogen in the 2s state and hydrogen molecules, e.g.n n
Journal of Physics B | 2014
Muhammad Umair; Svante Jonsell
Journal of Physics B | 2016
Muhammad Umair; Svante Jonsell
pmu (2s) + {text{H}}_{text{2}} to [(ppmu ^* )_{vJ}^{pq} - pee]_{vK} to [(ppmu ^* )_{vJ}^{pq} - pe]^ + + e^ - .
New Journal of Physics | 2014
N. Madsen; F. Robicheaux; Svante Jonsell