Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svati H. Shah is active.

Publication


Featured researches published by Svati H. Shah.


Science | 2007

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi

The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.


Cell Metabolism | 2009

A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

Christopher B. Newgard; James R. Bain; Michael J. Muehlbauer; Robert D. Stevens; Lillian F. Lien; Andrea M. Haqq; Svati H. Shah; Michelle Arlotto; Cris A. Slentz; James Rochon; Dianne Gallup; Olga Ilkayeva; Brett R. Wenner; William S. Yancy; Howard Eisenson; Gerald Musante; Richard S. Surwit; David S. Millington; Mark D. Butler; Laura P. Svetkey

Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.


Nature Genetics | 2008

The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm

Anna Helgadottir; Gudmar Thorleifsson; Kristinn P. Magnusson; Solveig Gretarsdottir; Valgerdur Steinthorsdottir; Andrei Manolescu; Gregory T. Jones; Gabriel J.E. Rinkel; Jan D. Blankensteijn; Antti Ronkainen; Juha Jääskeläinen; Yoshiki Kyo; Guy M. Lenk; Natzi Sakalihasan; Konstantinos Kostulas; Anders Gottsäter; Andrea Flex; Hreinn Stefansson; Torben Hansen; Gitte Andersen; Shantel Weinsheimer; Knut Borch-Johnsen; Torben Jørgensen; Svati H. Shah; Arshed A. Quyyumi; Christopher B. Granger; Muredach P. Reilly; Harland Austin; Allan I. Levey; Viola Vaccarino

Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 × 10−12) and intracranial aneurysm (OR = 1.29, P = 2.5 × 10−6), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.


Nature Genetics | 2009

Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction

Daniel F. Gudbjartsson; Unnur S. Bjornsdottir; Eva Halapi; Anna Helgadottir; Patrick Sulem; Gudrun M. Jonsdottir; Gudmar Thorleifsson; Hafdis T. Helgadottir; Valgerdur Steinthorsdottir; Hreinn Stefansson; Carolyn Williams; Jennie Hui; John Beilby; Nicole M. Warrington; Alan James; Lyle J. Palmer; Gerard H. Koppelman; Andrea Heinzmann; Marcus Krueger; H. Marike Boezen; Amanda Wheatley; Janine Altmüller; Hyoung Doo Shin; Soo-Taek Uh; Hyun Sub Cheong; Brynja Jonsdottir; David Gislason; Choon-Sik Park; Lm Rasmussen; Celeste Porsbjerg

Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 × 10−14, 5.4 × 10−10, 8.6 × 10−17, 1.2 × 10−10 and 6.5 × 10−19, respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 × 10−12) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 × 10−6, 2.2 × 10−5 and 2.4 × 10−4, respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 × 10−8) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).


Journal of the American College of Cardiology | 2009

The SLCO1B1*5 Genetic Variant Is Associated With Statin-Induced Side Effects

Deepak Voora; Svati H. Shah; Ivan Spasojevic; Shazia Ali; Carol R. Reed; Benjamin A. Salisbury; Geoffrey S. Ginsburg

OBJECTIVES We sought to identify single nucleotide polymorphisms associated with mild statin-induced side effects. BACKGROUND Statin-induced side effects can interfere with therapy. Single nucleotide polymorphisms in cytochrome P450 enzymes impair statin metabolism; the reduced function SLCO1B1*5 allele impairs statin clearance and is associated with simvastatin-induced myopathy with creatine kinase (CK) elevation. METHODS The STRENGTH (Statin Response Examined by Genetic Haplotype Markers) study was a pharmacogenetics study of statin efficacy and safety. Subjects (n = 509) were randomized to atorvastatin 10 mg, simvastatin 20 mg, or pravastatin 10 mg followed by 80 mg, 80 mg, and 40 mg, respectively. We defined a composite adverse event (CAE) as discontinuation for any side effect, myalgia, or CK >3x upper limit of normal during follow-up. We sequenced CYP2D6, CYP2C8, CYP2C9, CYP3A4, and SLCO1B1 and tested 7 reduced function alleles for association with the CAE. RESULTS The CAE occurred in 99 subjects (54 discontinuations, 49 myalgias, and 9 CK elevations). Sex was associated with CAE (percent female in CAE vs. no CAE groups, 66% vs. 50%, p < 0.01). SLCO1B1*5 was associated with CAE (percent with > or = 1 allele in CAE vs. no CAE groups, 37% vs. 25%, p = 0.03) and those with CAE with no significant CK elevation (p < or = 0.03). Furthermore, there was evidence for a gene-dose effect (percent with CAE in those with 0, 1, or 2 alleles: 19%, 27%, and 50%, trend p = 0.01). Finally, the CAE risk appeared to be greatest in those carriers assigned to simvastatin. CONCLUSIONS SLCO1B1*5 genotype and female sex were associated mild statin-induced side effects. These findings expand the results of a recent genome-wide association study of statin myopathy with CK >3x normal to milder, statin-induced, muscle side effects.


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Diabetes Care | 2009

Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women

Kim M. Huffman; Svati H. Shah; Robert D. Stevens; James R. Bain; Michael J. Muehlbauer; Cris A. Slentz; Charles J. Tanner; Maragatha Kuchibhatla; Joseph A. Houmard; Christopher B. Newgard; William E. Kraus

OBJECTIVE To determine whether circulating metabolic intermediates are related to insulin resistance and β-cell dysfunction in individuals at risk for type 2 diabetes. RESEARCH DESIGN AND METHODS In 73 sedentary, overweight to obese, dyslipidemic individuals, insulin action was derived from a frequently sampled intravenous glucose tolerance test. Plasma concentrations of 75 amino acids, acylcarnitines, free fatty acids, and conventional metabolites were measured with a targeted, mass spectrometry–based platform. Principal components analysis followed by backward stepwise linear regression was used to explore relationships between measures of insulin action and metabolic intermediates. RESULTS The 75 metabolic intermediates clustered into 19 factors comprising biologically related intermediates. A factor containing large neutral amino acids was inversely related to insulin sensitivity (SI) (R2 = 0.26). A factor containing fatty acids was inversely related to the acute insulin response to glucose (R2 = 0.12). Both of these factors, age, and a factor containing medium-chain acylcarnitines and glucose were inversely and independently related to the disposition index (DI) (R2 = 0.39). Sex differences were found for metabolic predictors of SI and DI. CONCLUSIONS In addition to the well-recognized risks for insulin resistance, elevated concentrations of large, neutral amino acids were independently associated with insulin resistance. Fatty acids were inversely related to the pancreatic response to glucose. Both large neutral amino acids and fatty acids were related to an appropriate pancreatic response, suggesting that these metabolic intermediates might play a role in the progression to type 2 diabetes, one by contributing to insulin resistance and the other to pancreatic failure. These intermediates might exert sex-specific effects on insulin action.


Science Translational Medicine | 2011

Differential Metabolic Impact of Gastric Bypass Surgery Versus Dietary Intervention in Obese Diabetic Subjects Despite Identical Weight Loss

Blandine Laferrère; D. J. Reilly; Sara Arias; Nicholas J. Swerdlow; Prakash Gorroochurn; Baani Bawa; Mousumi Bose; Julio Teixeira; Robert D. Stevens; Brett R. Wenner; James R. Bain; Michael J. Muehlbauer; Andrea M. Haqq; Lillian F. Lien; Svati H. Shah; Laura P. Svetkey; Christopher B. Newgard

The enhanced decrease in circulating branched-chain amino acids and their metabolites after gastric bypass occurs by mechanisms other than weight loss. Dissecting the Quick Fix In the Wizard of Oz, when Dorothy encounters a split in the yellow brick road, the Scarecrow assures her that all paths lead to the land of Oz. We’ve witnessed the perils Dorothy met along the path she chose; however, we don’t know what she would have encountered had she followed another route to Oz. Similarly, obese patients with type 2 diabetes can take one of two paths to weight loss—dietary intervention or gastric bypass surgery (GBP). Although the end result—weight loss—is the same, the metabolic shifts that occur en route appear to differ. Now, Laferrère et al. show that in patients with equivalent weight loss, those who underwent GBP displayed a larger decrease in certain circulating amino acids than did subjects who pursued the dietary intervention path. This difference may help to explain why patients who opted for the surgical intervention boasted better improvement in glucose homeostasis—including enhanced insulin sensitivity—than did those who lost weight by controlling their dietary intake. Obese patients with type 2 diabetes strive to lose weight for reasons more momentous than an approaching swimsuit season. Weight loss can improve the body’s ability to metabolize glucose and thus stems the serious complications of diabetes. Patients often can reduce or forgo their diabetes medications. However, in such patients, glycemic control is improved to a greater extent within days after GBP—before weight loss occurs—than after diet-induced shedding of pounds and inches. Precisely why remains a mystery, but research in animal models has revealed that higher-than-normal blood concentrations of branched-chain amino acids (BCAAs) and their metabolites play a role in the loss of insulin sensitivity. Furthermore, recent studies in human patients show a robust positive correlation between insulin resistance and blood levels of BCAAs and their by-products. Finally, obese people have higher circulating concentrations of these amino acids compared to their lean counterparts; the same goes for individuals with versus without diabetes. These observations imply that the rapid reversal of diabetes symptoms in GBP patients may have something to do with BCAA metabolism. Here, the authors measured circulating amounts of a variety of amino acids and acylcarnitines—some of which are produced primarily from BCAA metabolism—to characterize the differential metabolic responses to weight loss induced by GBP versus dietary intervention in obese type 2 diabetes patients. Circulating concentrations of total amino acids, BCAAs, and BCAA metabolites all decreased significantly after GBP but not after dietary intervention, despite equivalent weight loss. These findings were consistent in two patient cohorts, one from the New York Obesity Nutrition Research Center and one from Duke University; in the latter group, the effects were shown to persist for months. These data support the notion that the surgical intervention promoted enhanced BCAA metabolism by mechanisms separate from weight loss and suggest that changes in circulating amino acids pave the road to the correction of glycemic control observed after GBP. Glycemic control is improved more after gastric bypass surgery (GBP) than after equivalent diet-induced weight loss in patients with morbid obesity and type 2 diabetes mellitus. We applied metabolomic profiling to understand the mechanisms of this better metabolic response after GBP. Circulating amino acids (AAs) and acylcarnitines (ACs) were measured in plasma from fasted subjects by targeted tandem mass spectrometry before and after a matched 10-kilogram weight loss induced by GBP or diet. Total AAs and branched-chain AAs (BCAAs) decreased after GBP, but not after dietary intervention. Metabolites derived from BCAA oxidation also decreased only after GBP. Principal components (PC) analysis identified two major PCs, one composed almost exclusively of ACs (PC1) and another with BCAAs and their metabolites as major contributors (PC2). PC1 and PC2 were inversely correlated with pro-insulin concentrations, the C-peptide response to oral glucose, and the insulin sensitivity index after weight loss, whereas PC2 was uniquely correlated with levels of insulin resistance (HOMA-IR). These data suggest that the enhanced decrease in circulating AAs after GBP occurs by mechanisms other than weight loss and may contribute to the better improvement in glucose homeostasis observed with the surgical intervention.


Circulation-cardiovascular Genetics | 2010

Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events

Svati H. Shah; James R. Bain; Michael J. Muehlbauer; Robert D. Stevens; David R. Crosslin; Carol Haynes; Jennifer R. Dungan; L. Kristin Newby; Elizabeth R. Hauser; Geoffrey S. Ginsburg; Christopher B. Newgard; William E. Kraus

Background—Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. Methods and Results—We performed mass–spectrometry–based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls (“initial”), and 140 CAD cases and 140 controls (“replication”). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined (“event” group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled (“event-replication” group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis–derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). Conclusions—Metabolite profiles are associated with CAD and subsequent cardiovascular events.


Circulation | 2018

Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association

Emelia J. Benjamin; Salim S. Virani; Clifton W. Callaway; Alanna M. Chamberlain; Alex R. Chang; Susan Cheng; Stephanie E. Chiuve; Mary Cushman; Francesca N. Delling; Rajat Deo; Sarah D. de Ferranti; Jane F. Ferguson; Myriam Fornage; Cathleen Gillespie; Carmen R. Isasi; Monik Jimenez; Lori C. Jordan; Suzanne E. Judd; Daniel T. Lackland; Judith H. Lichtman; Lynda D. Lisabeth; Simin Liu; Chris T. Longenecker; Pamela L. Lutsey; Jason S. Mackey; David B. Matchar; Kunihiro Matsushita; Michael E. Mussolino; Khurram Nasir; Martin O’Flaherty

Each chapter listed in the Table of Contents (see next page) is a hyperlink to that chapter. The reader clicks the chapter name to access that chapter. Each chapter listed here is a hyperlink. Click on the chapter name to be taken to that chapter. Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together in a single document the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA’s My Life Check - Life’s Simple 7 (Figure1), which include core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure [BP], and glucose control) that contribute to cardiovascular health. The Statistical Update represents …

Collaboration


Dive into the Svati H. Shah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge