Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svein Isungset Støve is active.

Publication


Featured researches published by Svein Isungset Støve.


Human Molecular Genetics | 2015

Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects

Line M. Myklebust; Petra Van Damme; Svein Isungset Støve; Max J. Dörfel; Angèle Abboud; Thomas Vikestad Kalvik; Cédric Grauffel; Veronique Jonckheere; Yiyang Wu; Jeffrey Swensen; Hanna Kaasa; Glen Liszczak; Ronen Marmorstein; Nathalie Reuter; Gholson J. Lyon; Kris Gevaert; Thomas Arnesen

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.


European Journal of Human Genetics | 2015

De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females

Bernt Popp; Svein Isungset Støve; Sabine Endele; Line M. Myklebust; Juliane Hoyer; Heinrich Sticht; Silvia Azzarello-Burri; Anita Rauch; Thomas Arnesen; André Reis

Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity.


Cell Reports | 2015

An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity

Henriette Aksnes; Petra Van Damme; Marianne Goris; Kristian K. Starheim; Michaël Marie; Svein Isungset Støve; Camilla Hoel; Thomas Vikestad Kalvik; Kristine Hole; Nina Glomnes; Clemens Furnes; Sonja Ljostveit; Mathias Ziegler; Marc Niere; Kris Gevaert; Thomas Arnesen

N-terminal acetylation is a major and vital protein modification catalyzed by N-terminal acetyltransferases (NATs). NatF, or Nα-acetyltransferase 60 (Naa60), was recently identified as a NAT in multicellular eukaryotes. Here, we find that Naa60 differs from all other known NATs by its Golgi localization. A new membrane topology assay named PROMPT and a selective membrane permeabilization assay established that Naa60 faces the cytosolic side of intracellular membranes. An Nt-acetylome analysis of NAA60-knockdown cells revealed that Naa60, as opposed to other NATs, specifically acetylates transmembrane proteins and has a preference for N termini facing the cytosol. Moreover, NAA60 knockdown causes Golgi fragmentation, indicating an important role in the maintenance of the Golgis structural integrity. This work identifies a NAT associated with membranous compartments and establishes N-terminal acetylation as a common modification among transmembrane proteins, a thus-far poorly characterized part of the N-terminal acetylome.


Molecular & Cellular Proteomics | 2014

A Saccharomyces cerevisiae Model Reveals In Vivo Functional Impairment of the Ogden Syndrome N-Terminal Acetyltransferase NAA10 Ser37Pro Mutant

Petra Van Damme; Svein Isungset Støve; Nina Glomnes; Kris Gevaert; Thomas Arnesen

N-terminal acetylation (Nt-acetylation) occurs on the majority of eukaryotic proteins and is catalyzed by N-terminal acetyltransferases (NATs). Nt-acetylation is increasingly recognized as a vital modification with functional implications ranging from protein degradation to protein localization. Although early genetic studies in yeast demonstrated that NAT-deletion strains displayed a variety of phenotypes, only recently, the first human genetic disorder caused by a mutation in a NAT gene was reported; boys diagnosed with the X-linked Ogden syndrome harbor a p.Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of the NatA complex, and suffer from global developmental delays and lethality during infancy. Here, we describe a Saccharomyces cerevisiae model developed by introducing the human wild-type or mutant NatA complex into yeast lacking NatA (NatA-Δ). The wild-type human NatA complex phenotypically complemented the NatA-Δ strain, whereas only a partial rescue was observed for the Ogden mutant NatA complex suggesting that hNaa10 S37P is only partially functional in vivo. Immunoprecipitation experiments revealed a reduced subunit complexation for the mutant hNatA S37P next to a reduced in vitro catalytic activity. We performed quantitative Nt-acetylome analyses on a control yeast strain (yNatA), a yeast NatA deletion strain (yNatA-Δ), a yeast NatA deletion strain expressing wild-type human NatA (hNatA), and a yeast NatA deletion strain expressing mutant human NatA (hNatA S37P). Interestingly, a generally reduced degree of Nt-acetylation was observed among a large group of NatA substrates in the yeast expressing mutant hNatA as compared with yeast expressing wild-type hNatA. Combined, these data provide strong support for the functional impairment of hNaa10 S37P in vivo and suggest that reduced Nt-acetylation of one or more target substrates contributes to the pathogenesis of the Ogden syndrome. Comparative analysis between human and yeast NatA also provided new insights into the co-evolution of the NatA complexes and their substrates. For instance, (Met-)Ala- N termini are more prevalent in the human proteome as compared with the yeast proteome, and hNatA displays a preference toward these N termini as compared with yNatA.


Scientific Reports | 2015

NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment

Jillian P. Casey; Svein Isungset Støve; Catherine McGorrian; Joseph Galvin; Marina Blenski; Aimee M. Dunne; Sean Ennis; Francesca Brett; Mary D. King; Thomas Arnesen; Sally Ann Lynch

We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family’s disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT.


Human Mutation | 2016

Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency

Chloé Saunier; Svein Isungset Støve; Bernt Popp; Bénédicte Gérard; Marina Blenski; Nicholas AhMew; Charlotte de Bie; Paula Goldenberg; Bertrand Isidor; Boris Keren; Bruno Leheup; Laetitia Lampert; Cyril Mignot; Kamer Tezcan; Grazia M.S. Mancini; Caroline Nava; Melissa P. Wasserstein; Ange Line Bruel; Julien Thevenon; Alice Masurel; Yannis Duffourd; Paul Kuentz; Frédéric Huet; Jean Baptiste Rivière; Marjon van Slegtenhorst; Laurence Faivre; Amélie Piton; André Reis; Thomas Arnesen; Christel Thauvin-Robinet

N‐terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N‐terminal acetylation complex NatA have been associated with diverse, syndromic X‐linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X‐inactivation was random in five females. The core phenotype of X‐linked NAA10‐related N‐terminal‐acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype–phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X‐inactivation in females.


Molecular & Cellular Proteomics | 2013

Protein N-Terminal acetyltransferases act as N-Terminal propionyltransferases in vitro and in vivo

Håvard Foyn; Petra Van Damme; Svein Isungset Støve; Nina Glomnes; Rune Evjenth; Kris Gevaert; Thomas Arnesen

N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl coenzyme A to the alpha amino group of a nascent polypeptide. Nt-acetylation has emerged as an important protein modifier, steering protein degradation, protein complex formation and protein localization. Very recently, it was reported that some human proteins could carry a propionyl group at their N-terminus. Here, we investigated the generality of N-terminal propionylation by analyzing its proteome-wide occurrence in yeast and we identified 10 unique in vivo Nt-propionylated N-termini. Furthermore, by performing differential N-terminome analysis of a control yeast strain (yNatA), a yeast NatA deletion strain (yNatAΔ) or a yeast NatA deletion strain expressing human NatA (hNatA), we were able to demonstrate that in vivo Nt-propionylation of several proteins, displaying a NatA type substrate specificity profile, depended on the presence of either yeast or human NatA. Furthermore, in vitro Nt-propionylation assays using synthetic peptides, propionyl coenzyme A, and either purified human NATs or immunoprecipitated human NatA, clearly demonstrated that NATs are Nt-propionyltransferases (NPTs) per se. We here demonstrate for the first time that Nt-propionylation can occur in yeast and thus is an evolutionarily conserved process, and that the NATs are multifunctional enzymes acting as NPTs in vivo and in vitro, in addition to their main role as NATs, and their potential function as lysine acetyltransferases (KATs) and noncatalytic regulators.


Structure | 2016

Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.

Svein Isungset Støve; Robert S. Magin; Håvard Foyn; Bengt Erik Haug; Ronen Marmorstein; Thomas Arnesen

N-Terminal acetylation is a common and important protein modification catalyzed by N-terminal acetyltransferases (NATs). Six human NATs (NatA-NatF) contain one catalytic subunit each, Naa10 to Naa60, respectively. In contrast to the ribosome-associated NatA to NatE, NatF/Naa60 specifically associates with Golgi membranes and acetylates transmembrane proteins. To gain insight into the molecular basis for the function of Naa60, we developed an Naa60 bisubstrate CoA-peptide conjugate inhibitor, determined its X-ray structure when bound to CoA and inhibitor, and carried out biochemical experiments. We show that Naa60 adapts an overall fold similar to that of the catalytic subunits of ribosome-associated NATs, but with the addition of two novel elongated loops that play important roles in substrate-specific binding. One of these loops mediates a dimer to monomer transition upon substrate-specific binding. Naa60 employs a catalytic mechanism most similar to Naa50. Collectively, these data reveal the molecular basis for Naa60-specific acetyltransferase activity with implications for its Golgi-specific functions.


European Journal of Human Genetics | 2018

A novel NAA10 variant with impaired acetyltransferase activity causes developmental delay, intellectual disability, and hypertrophic cardiomyopathy

Svein Isungset Støve; Marina Blenski; Asbjørg Stray-Pedersen; Klaas J. Wierenga; Shalini N. Jhangiani; Zeynep Coban Akdemir; David Crawford; Nina McTiernan; Line M. Myklebust; Gabriela Purcarin; Rene Y. McNall-Knapp; Alexandrea Wadley; John W. Belmont; Jeffrey J. Kim; James R. Lupski; Thomas Arnesen

The NAA10-NAA15 complex (NatA) is an N-terminal acetyltransferase that catalyzes N-terminal acetylation of ~40% of all human proteins. N-terminal acetylation has several different roles in the cell, including altering protein stability and degradation, protein localization and protein–protein interactions. In recent years several X-linked NAA10 variants have been associated with genetic disorders. We have identified a previously undescribed NAA10 c.215T>C p.(Ile72Thr) variant in three boys from two unrelated families with a milder phenotypic spectrum in comparison to most of the previously described patients with NAA10 variants. These boys have development delay, intellectual disability, and cardiac abnormalities as overlapping phenotypes. Functional studies reveal that NAA10 Ile72Thr is destabilized, while binding to NAA15 most likely is intact. Surprisingly, the NatA activity of NAA10 Ile72Thr appears normal while its monomeric activity is decreased. This study further broadens the phenotypic spectrum associated with NAA10 deficiency, and adds to the evidence that genotype–phenotype correlations for NAA10 variants are much more complex than initially anticipated.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80

Marianne Goris; Robert S. Magin; Håvard Foyn; Line M. Myklebust; Sylvia Varland; Rasmus Ree; Adrian Drazic; Parminder Bhambra; Svein Isungset Støve; Markus Baumann; Bengt Erik Haug; Ronen Marmorstein; Thomas Arnesen

Collaboration


Dive into the Svein Isungset Støve's collaboration.

Top Co-Authors

Avatar

Thomas Arnesen

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronen Marmorstein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge