Svein Mossige
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svein Mossige.
Mathematics of Computation | 1981
Svein Mossige
New algorithms, based on a very efficient method to compute the h-range, have been used to extend known tables of the extremal h-range, to complete the solution in the case k = 3, and to find a lower bound for the extremal 2-range.
Bit Numerical Mathematics | 1970
Svein Mossige
When the permutations are ordered lexicographically there is an ordering number corresponding to each permutation. A relation between the ordering numbers of complementary permutations is shown which can be useful in a computer generation of permutations.
Computing | 1974
Svein Mossige
For given integern>2 the translation sets of permutations on 1, 2, ...,n−1 form a set of equivalence classes on the symmetric group ℙn-1. To each translation set there corresponds one step-cycle. A group consisting of a union of disjoint translation sets is called a translation invariant group. In this paper, we want to describe an algorithm for a systematic search for all translation invariant groups in ℙn-1.ZusammenfassungFür eine gegebene ganze Zahln>2 bilden die Translationsmengen von Permutationen der Elemente 1, 2, ...,n−1 eine Menge von Äquivalenzklassen auf der symmetrischen Gruppe ℙn-1. Zu jeder Translationsmenge gibt es ein „step-cycle”. Eine Gruppe dargestellt als Summe elementfremder Translationsmengen heißt eine translationsinvariante Gruppe. In dieser Arbeit beschreiben wir einen Algorithmus zur Bestimmung aller translationsinvarianten Gruppen in ℙn-1.
Mathematics of Computation | 2000
Svein Mossige
Given an integral “stamp” basis Ak with 1 = a1 < a2 < . . . < ak and a positive integer h, we define the h-range n(h, Ak) as n(h, Ak) = max{N ∈ N | n ≤ N =⇒ n = k ∑
Computing | 1977
Svein Mossige
The algorithm generates a list of distinct binaryn-tuples such that eachn-tuple differs from the one preceding it in just one coordinate [1]. The binary Gray code is often used to generate all subsets of a given set [2]. The whole theory can easily be generalized to generatingr-ary codes,r>2, [3].ZusammenfassungDer Algorithmus erzeugt eine Liste von verschiedenen binärenn-Tupeln, so daß jedesn-Tupel sich vom vorhergehenden in genau einer Koordinate unterscheidet [1]. Der binäre Gray-Code wird oft zur Erzeugung aller Teilmengen einer gegebenen Menge verwendet [2]. Die gesamte Theorie kann leicht auf die Erzeugungr-närer Codes,r>2, verallgemeinert werden [3].
Computing | 1974
Svein Mossige
For given integerm>1, each step-cycle corresponds to a set of permutations such that the step-cycles constitute a set of equivalence classes on the set of all permutations onm elements.The algorithm has been used in connection with computations to search for groups consisting of a union of disjoint sets of permutations such that each set of permutations corresponds to a step-cycle, see [2] and [8].ZusammenfassungFür eine gegebene ganze Zahlm>1 gibt es zu jeder „step-cycle” eine Menge von Permutationen so daß die „step-cycle” eine Menge von Äquivalenzklassen auf der Menge aller Permutationen vonm Elemente bilden. Der Algorithmus ist in Verbindung mit Berechnungen verwendet worden, um Gruppen darzustellen, die von einer Summe elementfremder Mengen von Permutationen bestehen, so daß jede Menge von Permutationen einer „step-cycle” entspricht.
Journal of Combinatorial Theory | 1971
Svein Mossige
Abstract This paper is based on Fredricksens paper [1], which I will assume known. In the following, I will investigate in detail the truth table of g, which corresponds to Fords algorithm.
Mathematics of Computation | 1972
Svein Mossige
Journal of Number Theory | 2001
Svein Mossige
Computing | 1977
Svein Mossige