Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Diederichs is active.

Publication


Featured researches published by Sven Diederichs.


Nature Cell Biology | 2009

Many roads to maturity: microRNA biogenesis pathways and their regulation.

Julia Winter; Stephanie Jung; Sarina Keller; Richard I. Gregory; Sven Diederichs

MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development and cancer. Although their mode of action has attracted great attention, the principles governing their expression and activity are only beginning to emerge. Recent studies have introduced a paradigm shift in our understanding of the microRNA biogenesis pathway, which was previously believed to be universal to all microRNAs. Maturation steps specific to individual microRNAs have been uncovered, and these offer a plethora of regulatory options after transcription with multiple proteins affecting microRNA processing efficiency. Here we review the recent advances in knowledge of the microRNA biosynthesis pathways and discuss their impact on post-transcriptional microRNA regulation during tumour development.


The New England Journal of Medicine | 2008

Detection of Mutations in EGFR in Circulating Lung-Cancer Cells

Shyamala Maheswaran; Lecia V. Sequist; Sunitha Nagrath; Lindsey Ulkus; Brian W. Brannigan; Chey V. Collura; Elizabeth J. Inserra; Sven Diederichs; A. John Iafrate; Daphne W. Bell; Subba R. Digumarthy; Alona Muzikansky; Daniel Irimia; Jeffrey Settleman; Ronald G. Tompkins; Thomas J. Lynch; Mehmet Toner; Daniel A. Haber

BACKGROUND The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. METHODS We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. RESULTS We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. CONCLUSIONS Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment.


Oncogene | 2003

MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer.

Ping Ji; Sven Diederichs; Wenbing Wang; Sebastian Böing; Ralf Metzger; Paul M. Schneider; Nicola Tidow; Burkhard Brandt; Horst Buerger; Etmar Bulk; Michael Thomas; Wolfgang E. Berdel; Hubert Serve; Carsten Müller-Tidow

Early-stage non-small cell lung cancer (NSCLC) can be cured by surgical resection, but a substantial fraction of patients ultimately dies due to distant metastasis. In this study, we used subtractive hybridization to identify gene expression differences in stage I NSCLC tumors that either did or did not metastasize in the course of disease. Individual clones (n=225) were sequenced and quantitative RT–PCR verified overexpression in metastasizing samples. Several of the identified genes (eIF4A1, thymosin β4 and a novel transcript named MALAT-1) were demonstrated to be significantly associated with metastasis in NSCLC patients (n=70). The genes’ association with metastasis was stage- and histology specific. The Kaplan–Meier analyses identified MALAT-1 and thymosin β4 as prognostic parameters for patient survival in stage I NSCLC. The novel MALAT-1 transcript is a noncoding RNA of more than 8000 nt expressed from chromosome 11q13. It is highly expressed in lung, pancreas and other healthy organs as well as in NSCLC. MALAT-1 expressed sequences are conserved across several species indicating its potentially important function. Taken together, these data contribute to the identification of early-stage NSCLC patients that are at high risk to develop metastasis. The identification of MALAT-1 emphasizes the potential role of noncoding RNAs in human cancer.


RNA Biology | 2012

The hallmarks of cancer: A long non-coding RNA point of view

Tony Gutschner; Sven Diederichs

With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.


Cancer Research | 2013

The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells

Tony Gutschner; Monika Hämmerle; Moritz Eißmann; Jeff Hsu; Youngsoo Kim; Gene Hung; Alexey S. Revenko; Gayatri Arun; Marion Stentrup; Matthias Groß; Martin Zörnig; A. Robert MacLeod; David L. Spector; Sven Diederichs

The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), also known as MALAT-1 or NEAT2 (nuclear-enriched abundant transcript 2), is a highly conserved nuclear noncoding RNA (ncRNA) and a predictive marker for metastasis development in lung cancer. To uncover its functional importance, we developed a MALAT1 knockout model in human lung tumor cells by genomically integrating RNA destabilizing elements using zinc finger nucleases. The achieved 1,000-fold MALAT1 silencing provides a unique loss-of-function model. Proposed mechanisms of action include regulation of splicing or gene expression. In lung cancer, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes. Consequently, MALAT1-deficient cells are impaired in migration and form fewer tumor nodules in a mouse xenograft. Antisense oligonucleotides (ASO) blocking MALAT1 prevent metastasis formation after tumor implantation. Thus, targeting MALAT1 with ASOs provides a potential therapeutic approach to prevent lung cancer metastasis with this ncRNA serving as both predictive marker and therapeutic target. Finally, regulating gene expression, but not alternative splicing, is the critical function of MALAT1 in lung cancer metastasis. In summary, 10 years after the discovery of the lncRNA MALAT1 as a biomarker for lung cancer metastasis, our loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis.


Journal of Molecular Medicine | 2013

MALAT1 — a paradigm for long noncoding RNA function in cancer

Tony Gutschner; Monika Hämmerle; Sven Diederichs

The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a bona fide long noncoding RNA (lncRNA). MALAT1, also known as nuclear-enriched transcript 2 (NEAT2), was discovered as a prognostic marker for lung cancer metastasis but also has been linked to several other human tumor entities. Recent work established a critical regulatory function of this lncRNA in lung cancer metastasis and cell migration. Moreover, MALAT1 is an interesting target for antimetastatic therapy in non-small cell lung carcinoma. Two alternative modes of action have been proposed for MALAT1: regulation of gene expression or alternative splicing. Although the exact mechanism of action in different physiological and pathological conditions still needs to be elucidated, MALAT1 acts as a regulator of gene expression. Although MALAT1 is highly evolutionary conserved in mammals and plays an important role in cancer and metastasis, MALAT1 is not essential for development in a knockout mouse model under normal physiological conditions. Hence, one central question for the future is finding the right stressor and the pathological or environmental condition which requires MALAT1 expression in vivo and entailing its strong evolutionary conservation. Here, we summarize the current knowledge about this important lncRNA. We introduce its discovery, biogenesis, and regulation and describe its known functions, mechanisms of action, and interaction partners.


Molecular and Cellular Biology | 2004

Translocation Products in Acute Myeloid Leukemia Activate the Wnt Signaling Pathway in Hematopoietic Cells

Carsten Müller-Tidow; Björn Steffen; Thomas Cauvet; Lara Tickenbrock; Ping Ji; Sven Diederichs; Bülent Sargin; Gabriele Köhler; Matthias Stelljes; Elena Puccetti; Martin Ruthardt; Sven DeVos; Scott W. Hiebert; H. Phillip Koeffler; Wolfgang E. Berdel; Hubert Serve

ABSTRACT The acute myeloid leukemia (AML)-associated translocation products AML1-ETO, PML-retinoic acid receptor alpha (RARα), and PLZF-RARα encode aberrant transcription factors. Several lines of evidence suggest similar pathogenetic mechanisms for these fusion proteins. We used high-density oligonucleotide arrays to identify shared target genes in inducibly transfected U937 cells expressing AML1-ETO, PML-RARα, or PLZF-RARα. All three fusion proteins significantly repressed the expression of 38 genes and induced the expression of 14 genes. Several of the regulated genes were associated with Wnt signaling. One of these, plakoglobin (γ-catenin), was induced on the mRNA and protein level by all three fusion proteins. In addition, primary AML blasts carrying one of the fusion proteins significantly overexpressed plakoglobin. The plakoglobin promoter was cloned and shown to be induced by AML1-ETO, with promoter activation depending on the corepressor and histone deacetylase binding domains. The induction of plakoglobin by AML fusion proteins led to downstream signaling and transactivation of TCF- and LEF-dependent promoters, including the c-myc promoter, which was found to be bound by plakoglobin in vivo after AML1-ETO expression. β-Catenin protein levels and TCF and LEF target genes such as c-myc and cyclin D1 were found to be induced by the fusion proteins. On the functional level, a dominant negative TCF inhibited colony growth of AML1-ETO-positive Kasumi cells, whereas plakoglobin transfection into myeloid 32D cells enhanced proliferation and clonal growth. Injection of plakoglobin-expressing 32D cells into syngeneic mice accelerated the development of leukemia. Transduction of plakoglobin into primitive murine hematopoietic progenitor cells preserved the immature phenotype during colony growth, suggesting enhanced self-renewal. These data provide evidence that activation of Wnt signaling is a common feature of several balanced translocations in AML.


RNA Biology | 2012

Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development

Moritz Eißmann; Tony Gutschner; Monika Hämmerle; Stefan Günther; Maïwen Caudron-Herger; Matthias Groß; Peter Schirmacher; Karsten Rippe; Thomas Braun; Martin Zörnig; Sven Diederichs

The metastasis-associated lung adenocarcinoma transcript 1, MALAT1, is a long non-coding RNA (lncRNA) that has been discovered as a marker for lung cancer metastasis. It is highly abundant, its expression is strongly regulated in many tumor entities including lung adenocarcinoma and hepatocellular carcinoma as well as physiological processes, and it is associated with many RNA binding proteins and highly conserved throughout evolution. The nuclear transcript MALAT-1 has been functionally associated with gene regulation and alternative splicing and its regulation has been shown to impact proliferation, apoptosis, migration and invasion. Here, we have developed a human and a mouse knockout system to study the loss-of-function phenotypes of this important ncRNA. In human tumor cells, MALAT1 expression was abrogated using Zinc Finger Nucleases. Unexpectedly, the quantitative loss of MALAT1 did neither affect proliferation nor cell cycle progression nor nuclear architecture in human lung or liver cancer cells. Moreover, genetic loss of Malat1 in a knockout mouse model did not give rise to any obvious phenotype or histological abnormalities in Malat1-null compared with wild-type animals. Thus, loss of the abundant nuclear long ncRNA MALAT1 is compatible with cell viability and normal development.


Cancer Research | 2006

Sequence variations of microRNAs in human cancer: Alterations in predicted secondary structure do not affect processing

Sven Diederichs; Daniel A. Haber

Expression levels of microRNAs (miRNAs) are globally reduced in cancer compared with matched normal tissues, and miRNA function has recently been implicated in tumorigenesis. To test whether epigenetic silencing contributes to miRNA suppression in tumors, lung cancer cells were treated with inhibitors of DNA methylation or histone deacetylation. No significant alteration in miRNA expression was detected using microarray profiling. To search for tumor-associated mutations that could affect processing and expression of mature miRNAs, a panel of 91 cancer-derived cell lines was analyzed for sequence variations in 15 miRNAs implicated in tumorigenesis by virtue of their known target transcripts (let-7 family targeting oncogenic Ras) or their localization to sites of frequent chromosomal instability (miR-143, miR-145, miR-26a-1, and miR-21). No mutations were detected within any of the short mature miRNA sequences. In addition to previously reported polymorphisms, 1 sequence variant in a precursor miRNA and 15 variants in primary miRNA (pri-miRNA) transcripts were identified. Despite pri-miRNAs having dramatic changes in the predicted secondary folding structure flanking putative cleavage sites, processing and miRNA maturation were not affected in vivo. Thus, genetic variants in miRNA precursors are common in cancer cells but are unlikely to have physiologic significance.


Cancer Research | 2004

S100 Family Members and Trypsinogens Are Predictors of Distant Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer

Sven Diederichs; Etmar Bulk; Björn Steffen; Ping Ji; Lara Tickenbrock; Kerstin Lang; Kurt S. Zänker; Ralf Metzger; Paul M. Schneider; Volker Gerke; Michael Thomas; Wolfgang E. Berdel; Hubert Serve; Carsten Müller-Tidow

Distant metastasis is the predominant cause of death in early-stage non-small cell lung cancer (NSCLC). Currently, it is impossible to predict the occurrence of metastasis at early stages and thereby separate patients who could be cured by surgical resection alone from patients who would benefit from additional chemotherapy. In this study, we applied a comparative microarray approach to identify gene expression differences between early-stage NSCLC patients whose cancer ultimately did or did not metastasize during the course of their disease. Transcriptional profiling of 82 microarrays from two patient groups revealed differential expression of several gene families including known predictors of metastasis (e.g., matrix metalloproteinases). In addition, we found S100P, S100A2, trypsinogen C (TRY6), and trypsinogen IVb (PRSS3) to be overexpressed in tumors that metastasized during the course of the disease. In a third group of 42 patients, we confirmed the induction of S100 proteins and trypsinogens in metastasizing tumors and its significant correlation with survival by real-time quantitative reverse transcription-PCR. Overexpression of S100A2, S100P, or PRSS3 in NSCLC cell cultures led to increased transendothelial migration, corroborating the role of S100A2, S100P, and PRSS3 in the metastatic process. Taken together, we provide evidence that expression of S100 proteins and trypsinogens is associated with metastasis and predicts survival in early stages of NSCLC. For the first time, this implicates a role of S100 proteins and trypsinogens in the metastatic process of early-stage NSCLC.

Collaboration


Dive into the Sven Diederichs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Gutschner

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Hämmerle

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthias Groß

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Peter Schirmacher

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Ji

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

H. Phillip Koeffler

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge