Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven-Erik Behrens is active.

Publication


Featured researches published by Sven-Erik Behrens.


PLOS ONE | 2011

Transcriptional activators of human genes with programmable DNA-specificity.

René Geiβler; Heidi Scholze; Simone Hahn; Jana Streubel; Ulla Bonas; Sven-Erik Behrens; Jens Boch

TAL (transcription activator-like) effectors are translocated by Xanthomonas bacteria into plant cells where they activate transcription of target genes. DNA target sequence recognition occurs in a unique mode involving a central domain of tandem repeats. Each repeat recognizes a single base pair in a contiguous DNA sequence and a pair of adjacent hypervariable amino acid residues per repeat specifies which base is bound. Rearranging the repeats allows the design of novel TAL proteins with predictable DNA-recognition specificities. TAL protein-based transcriptional activation in plant cells is mediated by a C-terminal activation domain (AD). Here, we created synthetic TAL proteins with designed repeat compositions using a novel modular cloning strategy termed “Golden TAL Technology”. Newly programmed TAL proteins were not only functional in plant cells, but also in human cells and activated targeted expression of exogenous as well as endogenous genes. Transcriptional activation in different human cell lines was markedly improved by replacing the TAL-AD with the VP16-AD of herpes simplex virus. The creation of TAL proteins with potentially any desired DNA-recognition specificity allows their versatile use in biotechnology.


Journal of Virology | 2003

Replication Studies Using Genotype 1a Subgenomic Hepatitis C Virus Replicons

Baohua Gu; Adam T. Gates; Olaf Isken; Sven-Erik Behrens; Robert T. Sarisky

ABSTRACT Recently, cell-based replicon systems for hepatitis C virus (HCV), in which the nonstructural proteins stably replicate subgenomic viral RNA in Huh7 cells, were developed. To date, one limitation of using these replicon systems to advance drug discovery is the inability of other genotypic derivatives, beyond those of two distinct strains of genotype 1b (HCV-N and Con1), to stably replicate in Huh7 cells. In this report, we evaluated a series of replicon genotype 1a-1b chimeras, as well as a complete genotype 1a replicon clone. A subgenomic replicon construct containing only type 1a sequences failed to generate stable colonies in Huh7 cells even after repeated attempts. Furthermore, addition of an NS5A adaptive mutation (S2204I) which enhances type 1b replicon efficiency was insufficient to confer replication to the wild-type 1a replicon. This subgenomic replicon was subsequently found to be inefficiently translated in Huh7 cells compared to a type 1b replicon, and the attenuation of translation mapped to the N-terminal region of NS3. Therefore, to ensure efficient translation and thereby support replication of the 1a genome, the coding sequence for first 75 residues from type 1a were replaced with the type 1b (strain Con 1) NS3 coding sequence. Although nonstructural proteins were expressed at lower levels with this replicon than with type 1b and although the amount of viral RNA was also severalfold lower (150 copies of positive-strand RNA per cell), the replicon stably replicated in Huh7 cells. Notwithstanding this difference, the ratio of positive- to negative-strand RNA of 26 was similar to that found with the type 1b replicon. Similar results were found for a 1b replicon expressing the type 1a RNA-dependent RNA polymerase. These 1a hybrid replicons maintained sensitivity to alpha interferon (IFN-α), albeit with an eightfold-higher 50% inhibitory concentration than type 1b replicons. Evidence is provided herein to confirm that this differential response to IFN-α may be attributed directly to the type 1a polymerase.


Journal of Virology | 2001

Genetic Analysis of the Pestivirus Nonstructural Coding Region: Defects in the NS5A Unit Can Be Complemented in trans

Claus W. Grassmann; Olaf Isken; Norbert Tautz; Sven-Erik Behrens

ABSTRACT The functional analysis of molecular determinants which control the replication of pestiviruses was considerably facilitated by the finding that subgenomic forms of the positive-strand RNA genome of BVDV (bovine viral diarrhea virus) are capable of autonomous replication in transfected host cells. The prototype replicon, BVDV DI9c, consists of the genomic 5′ and 3′ untranslated regions and a truncated open reading frame (ORF) encoding mainly the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To gain insight into which of these proteins are essential for viral replication and whether they act in cisor in trans, we introduced a large spectrum of in-frame mutations into the DI9c ORF. Tests of the mutant RNAs in terms of their replication capacity and their ability to support translation and cleavage of the nonstructural polyprotein, and whether defects could be rescued in trans, yielded the following results. (i) RNA replication was found to be dependent on the expression of each of the DI9c-encoded mature proteins NS3 to NS5B (and the known associated enzymatic activities). In the same context, a finely balanced molar ratio of the diverse proteolytic processing products was indicated to be crucial for the formation of an active catalytic replication complex. (ii) Synthesis of negative-strand intermediate and progeny positive-strand RNA was observed to be strictly coupled with all functional DI9c ORF derivatives. NS3 to NS5B were hence suggested to play a pivotal role even during early steps of the viral replication pathway. (iii) Mutations in the NS3 and NS4B units which generated nonfunctional or less functional RNAs were determined to becis dominant. Likewise, lethal alterations in the NS4A and NS5B regions were invariably noncomplementable. (iv) In surprising contrast, replication of functional and nonfunctional NS5A mutants could be clearly enhanced and restored, respectively. In summary, our data provide initial insights into the organization of the pestivirus replication machinery.


Journal of Virology | 2000

A Stem-Loop Motif Formed by the Immediate 5′ Terminus of the Bovine Viral Diarrhea Virus Genome Modulates Translation as well as Replication of the Viral RNA

Haiying Yu; Olaf Isken; Claus W. Grassmann; Sven-Erik Behrens

ABSTRACT Bovine viral diarrhea virus (BVDV), aPestivirus member of the Flaviviridae family, has a positive-stranded RNA genome which consists of a single open reading frame (ORF) and untranslated regions (UTRs) at the 5′ and 3′ ends. The 5′ UTR harbors extensive RNA structure motifs; most of them were shown to contribute to an internal ribosomal entry site (IRES), which mediates cap-independent translation of the ORF. The extreme 5′-terminal region of the BVDV genome had so far been believed not to be required for IRES function. By structure probing techniques, we initially verified the existence of a computer-predicted stem-loop motif at the 5′ end of the viral genome (hairpin Ia) as well as at the 3′ end of the complementary negative-strand replication intermediate [termed hairpin Ia (−)]. While the stem of this structure is mainly constituted of nucleotides that are conserved among pestiviruses, the loop region is predominantly composed of variable residues. Taking a reverse genetics approach to a subgenomic BVDV replicon RNA (DI9c) which could be equally employed in a translation as well as replication assay system based on BHK-21 cells, we obtained the following results. (i) Proper folding of the Ia stem was found to be crucial for efficient translation. Thus, in the context of an authentic replication-competent viral RNA, the 5′-terminal motif operates apparently as an integral functional part of the ribosome entry. (ii) An intact loop structure and a stretch of nucleotide residues that constitute a portion of the stem of the Ia or the Ia (−) motif, respectively, were defined to represent important determinants of the RNA replication pathway. (iii) Formation of the stem structure of the Ia (−) motif was determined to be not critical for RNA replication. In summary, our findings affirmed that the 5′-terminal region of the BVDV genome encodes a bifunctional secondary structure motif which may enable the viral RNA to switch from the translation to the replicative cycle and vice versa.


Nucleic Acids Research | 2012

The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes

Rene Geissler; Ralph Golbik; Sven-Erik Behrens

The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.


Journal of Immunological Methods | 2009

Improved semiquantitative Western blot technique with increased quantification range.

F. Heidebrecht; A. Heidebrecht; I. Schulz; Sven-Erik Behrens; Augustinus Bader

With the development of new interdisciplinary fields such as systems biology, the quantitative analysis of protein expression in biological samples gains more and more importance. Although the most common method for this is ELISA, Western blot also has advantages: The separation of proteins by size allows the evaluation of only specifically bound protein. This work examines the Western blot signal chain, determines some of the parameters relevant for quantitative analysis and proposes a mathematical model of the reaction kinetics. Using this model, a semiquantitative Western blot method for simultaneous quantification of different proteins using a hyperbolic calibration curve was developed. A program was written for the purpose of hyperbolic regression that allows quick determination of the calibration curve coefficients. This program can be used also for approximation of calibration curves in other applications such as ELISA, BCA or Bradford assays.


Journal of Virology | 2010

Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication.

Ruth L. O. Stricker; Sven-Erik Behrens; Egbert Mundt

ABSTRACT Two of the central issues in developing new strategies to interfere with viral infections concern the identification of cellular proteins involved in viral replication and/or antiviral measures and the dissection of the underlying molecular mechanisms. To gain initial insight into the role of host proteins in the life cycle of infectious bursal disease virus (IBDV), a double-stranded RNA virus, we examined the cellular nuclear factor 45 (NF45). NF45 was previously indicated to be involved in the replication process of other types of RNA viruses. Interestingly, by performing immunofluorescence studies, we found that in IBDV-infected cells the mainly nuclear NF45 accumulated at the sites of viral replication in the cytoplasm. NF45 was shown to specifically colocalize with the viral RNA-dependent RNA polymerase VP1, the capsid protein VP2, and the ribonucleoprotein VP3. Immunoprecipitation experiments indicated protein-protein associations between NF45 and VP1, VP2, and VP3. Expression of the individual VP3 or the combination of expression of VP1 and VP3 did not result in a cytoplasmic accumulation of NF45, which, among other data, showed that recruitment of the cellular protein in infected cells functionally correlates with the viral replication process. Since small interfering RNA(siRNA)-mediated downregulation of NF45 resulted in an approximately 5-fold increase of virus yield, our study suggests that NF45, by association with viral proteins, is part of a yet-uncharacterized cellular defense mechanism against IBDV infections.


Microbial Cell Factories | 2012

A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis

Jorrit-Jan Krijger; Jan Baumann; Melanie Wagner; Katja Schulze; Christian Reinsch; Thomas Klose; Osita F Onuma; Claudia Simon; Sven-Erik Behrens; Karin D. Breunig

BackgroundThe Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining.ResultsSelection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox) and a viral envelope protein (BVDV-E2), respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained.ConclusionsA novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of the chromosomal LAC4 promoter and that allows monitoring of its transcription rates by β-galactosidase measurement. The procedure is rapid and efficient, and the resulting recombinant strains contain no foreign genes other than the gene of interest. The recombinant strains can be grown non-selectively in rich medium and stably maintained even when the gene product exerts protein toxicity.


Virology | 2009

Replication of Tomato bushy stunt virus RNA in a plant in vitro system

Torsten Gursinsky; Beate Schulz; Sven-Erik Behrens

An ideal system to investigate individual determinants of the replication process of (+)-strand RNA viruses is a cell-free extract that supports viral protein and RNA synthesis in a synchronized manner. Here, we applied a translation/replication system based on cytoplasmic extracts of Nicotiana tabacum cells to Tomato bushy stunt virus (TBSV) RNA. In vitro translated TBSV proteins p33 and p92 form viral replicase, which, in the same reaction, accomplishes the entire replication cycle on exogenous TBSV DI or full-length RNA. Tests of mutant TBSV RNAs confirmed the template specificity of the in vitro replication reaction. Complementation experiments ascertained the significance of an earlier identified TBSV host factor. Interestingly, formation of the viral replicase occurs also in the absence of concurrent protein synthesis demonstrating that translation and RNA replication are not functionally linked in this system. Our studies with cell-free extracts of a plant host thus confirmed earlier findings and enabled novel insights into the TBSV RNA replication process.


Journal of Biological Chemistry | 2010

Mechanisms of Activity and Inhibition of the Hepatitis C Virus RNA-dependent RNA Polymerase

Stefan Reich; Ralph Golbik; René Geissler; Hauke Lilie; Sven-Erik Behrens

The RNA-dependent RNA polymerase NS5B is a key enzyme of the replication of hepatitis C virus (HCV) and a major therapeutic target. Applying a novel continuous assay with highly purified protein and a fluorescent RNA-template we provide for the first time a comprehensive mechanistic description of the enzymatic reaction. Using fluorescence spectroscopy, the kinetics of NS5B was confirmed to consist of two half-reactions, namely substrate binding and turnover. Determining the binding constants of the substrates and the rate constants of individual reaction steps, NS5B was shown to bind the template single-stranded RNA with high affinity (nanomolar range) and in a stepwise process that reflects the substrate positioning. As demonstrated by CD, NTP(s) binding caused a tertiary structural change of the enzyme into an active conformation. The second half-reaction was dissected into a sequential polymerization and a subsequent, rate-limiting product release reaction. Taking advantage of these tools, we analyzed the mechanism of action of the NS5B inhibitor HCV-796, which was shown to interfere with the formation of double-stranded RNA by blocking the second half-reaction.

Collaboration


Dive into the Sven-Erik Behrens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Isken

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge