Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Hoffner is active.

Publication


Featured researches published by Sven Hoffner.


Chest | 2009

Emergence of New Forms of Totally Drug-Resistant Tuberculosis Bacilli: Super Extensively Drug-Resistant Tuberculosis or Totally Drug-Resistant Strains in Iran

Ali Akbar Velayati; Mohammad Reza Masjedi; Parissa Farnia; Payam Tabarsi; Jalladein Ghanavi; Abol Hassan ZiaZarifi; Sven Hoffner

BACKGROUNDnThe study documented the emergence of new forms of resistant bacilli (totally drug-resistant [TDR] or super extensively drug-resistant [XDR] tuberculosis [TB] strains) among patients with multidrug-resistant TB (MDR-TB).nnnMETHODSnSusceptibility testing against first- and second-line drugs was performed on isolated Mycobacterium tuberculosis strains. Subsequently, the strains identified as XDR or TDR M tuberculosis were subjected to spoligotyping and variable numbers of tandem repeats (VNTR).nnnRESULTSnOf 146 MDR-TB strains, 8 XDR isolates (5.4%) and 15 TDR isolates (10.3%) were identified. The remaining strains were either susceptible (67%) or had other resistant patterns (20%). Overall, the median of treatments and drugs previously received by MDR-TB patients was two courses of therapy of 15 months duration with five drugs (isoniazid [INH], rifampicin [RF], streptomycin, ethambutol, and pyrazinamide). The median of in vitro drug resistance for all studied cases was INH and RF. The XDR or TDR strains were collected from both immigrants (Afghan, 30.4%; Azerbaijani, 8.6%; Iraqi, 4.3%) and Iranian (56.5%) MDR-TB cases. In such cases, the smear and cultures remained positive after 18 months of medium treatment with second-line drugs (ethionamide, para-aminosalicylic acid, cycloserine, ofloxacin, amikacin, and ciprofloxacin). Spoligotyping revealed Haarlem (39.1%), Beijing (21.7%), EAI (21.7%), and CAS (17.3%) superfamilies of M tuberculosis. These superfamilies had different VNTR profiles, which eliminated the recent transmission among MDR-TB cases.nnnCONCLUSIONSnThe isolation of TDR strains from MDR-TB patients from different regional countries is alarming and underlines the possible dissemination of such strains in Asian countries. Now the next question is how one should control and treat such cases.


Chest | 2009

Original ResearchTuberculosisEmergence of New Forms of Totally Drug-Resistant Tuberculosis Bacilli: Super Extensively Drug-Resistant Tuberculosis or Totally Drug-Resistant Strains in Iran

Ali Akbar Velayati; Mohammad Reza Masjedi; Parissa Farnia; Payam Tabarsi; Jalladein Ghanavi; Abol Hassan ZiaZarifi; Sven Hoffner

BACKGROUNDnThe study documented the emergence of new forms of resistant bacilli (totally drug-resistant [TDR] or super extensively drug-resistant [XDR] tuberculosis [TB] strains) among patients with multidrug-resistant TB (MDR-TB).nnnMETHODSnSusceptibility testing against first- and second-line drugs was performed on isolated Mycobacterium tuberculosis strains. Subsequently, the strains identified as XDR or TDR M tuberculosis were subjected to spoligotyping and variable numbers of tandem repeats (VNTR).nnnRESULTSnOf 146 MDR-TB strains, 8 XDR isolates (5.4%) and 15 TDR isolates (10.3%) were identified. The remaining strains were either susceptible (67%) or had other resistant patterns (20%). Overall, the median of treatments and drugs previously received by MDR-TB patients was two courses of therapy of 15 months duration with five drugs (isoniazid [INH], rifampicin [RF], streptomycin, ethambutol, and pyrazinamide). The median of in vitro drug resistance for all studied cases was INH and RF. The XDR or TDR strains were collected from both immigrants (Afghan, 30.4%; Azerbaijani, 8.6%; Iraqi, 4.3%) and Iranian (56.5%) MDR-TB cases. In such cases, the smear and cultures remained positive after 18 months of medium treatment with second-line drugs (ethionamide, para-aminosalicylic acid, cycloserine, ofloxacin, amikacin, and ciprofloxacin). Spoligotyping revealed Haarlem (39.1%), Beijing (21.7%), EAI (21.7%), and CAS (17.3%) superfamilies of M tuberculosis. These superfamilies had different VNTR profiles, which eliminated the recent transmission among MDR-TB cases.nnnCONCLUSIONSnThe isolation of TDR strains from MDR-TB patients from different regional countries is alarming and underlines the possible dissemination of such strains in Asian countries. Now the next question is how one should control and treat such cases.


Genome Research | 2012

Microevolution of extensively drug-resistant tuberculosis in Russia.

Nicola Casali; Nikolayevskyy; Yanina Balabanova; Olga Ignatyeva; Irina Kontsevaya; Harris; Stephen D. Bentley; Julian Parkhill; Sergey Nejentsev; Sven Hoffner; Rolf D. Horstmann; Timothy Brown; Francis Drobniewski

Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72% belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted.


Nature Genetics | 2016

Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

David Stucki; Daniela Brites; Leïla Jeljeli; Mireia Coscolla; Qingyun Liu; Andrej Trauner; Lukas Fenner; Liliana K. Rutaihwa; Sonia Borrell; Tao Luo; Qian Gao; Midori Kato-Maeda; Marie Ballif; Matthias Egger; Rita Macedo; Helmi Mardassi; Milagros Moreno; Griselda Tudo Vilanova; Janet Fyfe; Maria Globan; Jackson Thomas; Frances Jamieson; Jennifer L. Guthrie; Adwoa Asante-Poku; Dorothy Yeboah-Manu; Eddie M. Wampande; Willy Ssengooba; Moses Joloba; W. Henry Boom; Indira Basu

Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.


Journal of Antimicrobial Chemotherapy | 2015

Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study

Emmanuelle Cambau; Miguel Viveiros; Diana Machado; L. Raskine; Claudia Ritter; Enrico Tortoli; V. Matthys; Sven Hoffner; Elvira Richter; M. L. Perez Del Molino; Daniela Maria Cirillo; D. van Soolingen; Erik C. Böttger

OBJECTIVESnTreatment outcome of MDR-TB is critically dependent on the proper use of second-line drugs as per the result of in vitro drug susceptibility testing (DST). We aimed to establish a standardized DST procedure based on quantitative determination of drug resistance and compared the results with those of genotypes associated with drug resistance.nnnMETHODSnThe protocol, based on MGIT 960 and the TB eXiST software, was evaluated in nine European reference laboratories. Resistance detection at a screening drug concentration was followed by determination of resistance levels and estimation of the resistance proportion. Mutations in 14 gene regions were investigated using established techniques.nnnRESULTSnA total of 139 Mycobacterium tuberculosis isolates from patients with MDR-TB and resistance beyond MDR-TB were tested for 13 antituberculous drugs: isoniazid, rifampicin, rifabutin, ethambutol, pyrazinamide, streptomycin, para-aminosalicylic acid, ethionamide, amikacin, capreomycin, ofloxacin, moxifloxacin and linezolid. Concordance between phenotypic and genotypic resistance was >80%, except for ethambutol. Time to results was short (median 10 days). High-level resistance, which precludes the therapeutic use of an antituberculous drug, was observed in 49% of the isolates. The finding of a low or intermediate resistance level in 16% and 35% of the isolates, respectively, may help in designing an efficient personalized regimen for the treatment of MDR-TB patients.nnnCONCLUSIONSnThe automated DST procedure permits accurate and rapid quantitative resistance profiling of first- and second-line antituberculous drugs. Prospective validation is warranted to determine the impact on patient care.


Journal of Clinical Microbiology | 2015

Diagnostic Performance of the New Version (v2.0) of GenoType MTBDRsl Assay for Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs: a Multicenter Study

Elisa Tagliani; Andrea M. Cabibbe; Paolo Miotto; Emanuele Borroni; Juan Carlos Toro; Mikael Mansjö; Sven Hoffner; Doris Hillemann; Aksana Zalutskaya; Alena Skrahina; Daniela M. Cirillo

ABSTRACT Resistance to fluoroquinolones (FLQ) and second-line injectable drugs (SLID) is steadily increasing, especially in eastern European countries, posing a serious threat to effective tuberculosis (TB) infection control and adequate patient management. The availability of rapid molecular tests for the detection of extensively drug-resistant TB (XDR-TB) is critical in areas with high rates of multidrug-resistant TB (MDR-TB) and XDR-TB and limited conventional drug susceptibility testing (DST) capacity. We conducted a multicenter study to evaluate the performance of the new version (v2.0) of the Genotype MTBDRsl assay compared to phenotypic DST and sequencing on a panel of 228 Mycobacterium tuberculosis isolates and 231 smear-positive clinical specimens. The inclusion of probes for the detection of mutations in the eis promoter region in the MTBDRsl v2.0 test resulted in a higher sensitivity for detection of kanamycin resistance for both direct and indirect testing (96% and 95.4%, respectively) than that seen with the original version of the assay, whereas the test sensitivities for detection of FLQ resistance remained unchanged (93% and 83.6% for direct and indirect testing, respectively). Moreover, MTBDRsl v2.0 showed better performance characteristics than v1.0 for the detection of XDR-TB, with high specificity and sensitivities of 81.8% and 80.4% for direct and indirect testing, respectively. MTBDRsl v2.0 thus represents a reliable test for the rapid detection of resistance to second-line drugs and a useful screening tool to guide the initiation of appropriate MDR-TB treatment.


Biochimica et Biophysica Acta | 2016

Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis

Tomas N. Gustafsson; Harer Osman; Jim Werngren; Sven Hoffner; Lars Engman; Arne Holmgren

BACKGROUNDnBacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms.nnnMETHODSnWe studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis.nnnRESULTSnThe most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier.nnnCONCLUSIONSnThese results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development.nnnGENERAL SIGNIFICANCEnWe have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens.


PLOS ONE | 2014

Comparison between RFLP and MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Isolated in Stockholm 2009 to 2011

Jerker Jonsson; Sven Hoffner; Ingela Berggren; Judith Bruchfeld; Solomon Ghebremichael; Alexandra Pennhag; Ramona Groenheit

Our aim was to analyze the difference between methods for genotyping of Mycobacterium tuberculosis complex isolates. We collected genotyping results from Restriction Fragment Length Polymorphism (RFLP) and Mycobacterial Interspersed Repetitive Units - Variable Numbers of Tandem Repeat (MIRU-VNTR) in a geographically limited area (Stockholm) during a period of three years. The number and proportion of isolates belonging to clusters was reduced by 45 and 35% respectively when combining the two methods compared with using RFLP or MIRU-VNTR only. The mean size of the clusters was smaller when combining methods and smaller with RFLP compared to MIRU-VNTR. In clusters with confirmed epidemiological links RFLP coincided slightly better than MIRU-VNTR but where there was a difference, the variation in MIRU-VNTR pattern was only in a single locus. In isolates with few IS6110 bands in RFLP, MIRU-VNTR differentiated the isolates more, dividing the RFLP clusters. Since MIRU-VNTR is faster and less labour-intensive it is the method of choice for routine genotyping. In most cases it will be sufficient for epidemiological purposes but true clustering might still be considered if there are epidemiological links and the MIRU-VNTR results differ in only one of its 24 loci.


Microbial Drug Resistance | 2008

Prevalence of multidrug-resistant pulmonary tuberculosis in counties with different duration of DOTS implementation in rural China.

Yi Hu; Barun Mathema; Weibing Wang; Sven Hoffner; Barry N. Kreiswirth; Biao Xu

AIMSnThis study aimed to describe the prevalence of drug-resistant tuberculosis (TB) among pulmonary TB patients in rural China and to determine the extent of multidrug-resistant TB (MDR-TB) circulating in areas with varied duration of Directly Observed Treatment, Short Course (DOTS) implementation.nnnMETHODSnA cross-sectional study was conducted in two rural counties in eastern China: Deqing with over 10 years DOTS implementation and Guanyun under its second year of DOTS. The subjects were all culture-positive pulmonary TB patients newly diagnosed or re-treated during 12 months of 2004-2005. The proportion method was used for drug susceptibility testing.nnnRESULTSnAmong the 399 subjects, 283 were new TB cases and 116 were previously treated. The rates of overall resistance (i.e., resistance to at least one drug) in new cases were 50.4% (67) and 63.4% (95), respectively, in Deqing and Guanyun (p = 0.028), and 67.3% (33) and 83.6% (56), respectively, in previously treated cases (p = 0.0410). The rates of MDR-TB in new cases were 3.8% (5) in Deqing and 14.7% (22) in Guanyun (p = 0.0018), and 16.3% (8) and 34.3% (23) in previously treated cases (p = 0.0305).nnnCONCLUSIONSnNewly diagnosed and previously treated TB patients from the short-term DOTS-covered county were at higher risk for overall drug-resistance TB and MDR-TB. Standardized diagnosis and treatment strategies for drug-resistant TB are urgently needed for effective control of MDR-TB in rural China.


Journal of Clinical Microbiology | 2016

A multilaboratory, multicountry study to determine MIC quality control ranges for phenotypic drug susceptibility testing of selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid

Koné Kaniga; Daniela Maria Cirillo; Sven Hoffner; Nazir Ismail; Devinder Kaur; Nacer Lounis; Beverly Metchock; Gaby E. Pfyffer; Amour Venter

ABSTRACT Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2× prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain was Mycobacterium tuberculosis H37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against the M. tuberculosis H37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.

Collaboration


Dive into the Sven Hoffner's collaboration.

Top Co-Authors

Avatar

Jim Werngren

Public Health Agency of Sweden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Wijkander

Public Health Agency of Sweden

View shared research outputs
Top Co-Authors

Avatar

Mikael Mansjö

Public Health Agency of Sweden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverly Metchock

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge