Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Jechalke is active.

Publication


Featured researches published by Sven Jechalke.


Trends in Microbiology | 2014

Fate and effects of veterinary antibiotics in soil

Sven Jechalke; Holger Heuer; Jan Siemens; Wulf Amelung; Kornelia Smalla

Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections.


Frontiers in Microbiology | 2012

IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes

Holger Heuer; Chu Thi Thanh Binh; Sven Jechalke; Christoph Kopmann; Ute Zimmerling; Ellen Krögerrecklenfort; Thomas Ledger; Bernardo González; Eva M. Top; Kornelia Smalla

The role of broad-host range IncP-1ε plasmids in the dissemination of antibiotic resistance in agricultural systems has not yet been investigated. These plasmids were detected in total DNA from all of 16 manure samples and in arable soil based on a novel 5′-nuclease assay for real-time PCR. A correlation between IncP-1ε plasmid abundance and antibiotic usage was revealed. In a soil microcosm experiment the abundance of IncP-1ε plasmids was significantly increased even 127 days after application of manure containing the antibiotic compound sulfadiazine, compared to soil receiving only manure, only sulfadiazine, or water. Fifty IncP-1ε plasmids that were captured in E. coli CV601gfp from bacterial communities of manure and arable soil were characterized by PCR and hybridization. All plasmids carried class 1 integrons with highly varying sizes of the gene cassette region and the sul1 gene. Three IncP-1ε plasmids captured from soil bacteria and one from manure were completely sequenced. The backbones were nearly identical to that of the previously described IncP-1ε plasmid pKJK5. The plasmids differed mainly in the composition of a Tn402-like transposon carrying a class 1 integron with varying gene cassettes, IS1326, and in three of the plasmids the tetracycline resistance transposon Tn1721 with various truncations. Diverse Beta- and Gammaproteobacteria were revealed as hosts of one of the IncP-1ε plasmids in soil microcosms. Our data suggest that IncP-1ε plasmids are important vectors for horizontal transfer of antibiotic resistance in agricultural systems.


Applied and Environmental Microbiology | 2013

Increased Abundance and Transferability of Resistance Genes after Field Application of Manure from Sulfadiazine-Treated Pigs

Sven Jechalke; Christoph Kopmann; Ingrid Rosendahl; Joost Groeneweg; Viola Weichelt; Ellen Krögerrecklenfort; Nikola Brandes; Mathias Nordwig; Guo-Chun Ding; Jan Siemens; Holger Heuer; Kornelia Smalla

ABSTRACT Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.


PLOS ONE | 2014

Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine

Guo-Chun Ding; Viviane Radl; Brigitte Schloter-Hai; Sven Jechalke; Holger Heuer; Kornelia Smalla; Michael Schloter

Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ.


FEMS Microbiology Ecology | 2013

Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil

Christoph Kopmann; Sven Jechalke; Ingrid Rosendahl; Joost Groeneweg; Ellen Krögerrecklenfort; Ute Zimmerling; Viola Weichelt; Jan Siemens; Wulf Amelung; Holger Heuer; Kornelia Smalla

Veterinary antibiotics entering agricultural land with manure pose the risk of spreading antibiotic resistance. The fate of sulfadiazine (SDZ) introduced via manure and its effect on resistance gene levels in the rhizosphere were compared with that in bulk soil. Maize plants were grown for 9 weeks in soil fertilized with manure either from SDZ-treated pigs (SDZ treatment) or from untreated pigs (control). CaCl(2) -extractable concentrations of SDZ dissipated faster in the rhizosphere than in bulk soil, but SDZ remained detectable over the whole time. For bulk soil, the abundance of sul1 and sul2 relative to 16S rRNA gene copies was higher in the SDZ treatment than in the control, as revealed by quantitative PCR on days 14 and 63. In the rhizosphere, sampled on day 63, the relative sul gene abundances were also significantly increased in the SDZ treatment. The accumulated SDZ exposure (until day 63) of the bacteria significantly correlated with the log relative abundance of sul1 and sul2, so that these resistance genes were less abundant in the rhizosphere than in bulk soil. Plasmids conferring SDZ resistance, which were exogenously captured in Escherichia coli, mainly belonged to the LowGC group and carried a heterogeneous load of resistances to different classes of antibiotics.


FEMS Microbiology Ecology | 2014

Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs

Sven Jechalke; Andreas Focks; Ingrid Rosendahl; Joost Groeneweg; Jan Siemens; Holger Heuer; Kornelia Smalla

Difloxacin (DIF) belongs to the class of fluoroquinolone antibiotics that have been intensively used for the treatment of bacterial infections in veterinary and human medicine. The aim of this field study was to compare the effect of manure from DIF-treated pigs and untreated pigs on the bacterial community structure and resistance gene abundance in bulk soil and rhizosphere of maize. A significant effect of DIF manure on the bacterial community composition in bulk soil was revealed by denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments amplified from total community DNA. In few samples, quinolone resistance genes qnrB and qnrS1/qnrS2 were detected by PCR and subsequent hybridization, while qnrA was not detected. Quantitative PCR revealed an increased abundance of the integrase gene intI1 of class I integrons and sulfonamide resistance genes sul1 and sul2 in DIF manure-treated bulk soil and rhizosphere, relative to 16S rRNA genes, while traN genes specific for LowGC-type plasmids were increased only in bulk soil. Principal component analysis of DGGE profiles suggested a manure effect in soil until day 28, but samples of days 71 and 140 were found close to untreated soil, indicating resilience of soil community compositions from disturbances by manure.


Applied and Environmental Microbiology | 2014

Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year.

Simone Dealtry; Peter N. Holmsgaard; Vincent Dunon; Sven Jechalke; Guo-Chun Ding; Ellen Krögerrecklenfort; Holger Heuer; Lars Hestbjerg Hansen; Dirk Springael; Sebastian Zühlke; Søren J. Sørensen; Kornelia Smalla

ABSTRACT Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides.


Frontiers in Microbiology | 2015

Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil

Sven Jechalke; Melanie Broszat; Friederike Lang; Christina Siebe; Kornelia Smalla; Elisabeth Grohmann

Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.


Applied and Environmental Microbiology | 2013

Quantification of IncP-1 plasmid prevalence in environmental samples

Sven Jechalke; Simone Dealtry; Kornelia Smalla; Holger Heuer

ABSTRACT To study the role of broad-host-range IncP-1 plasmids in bacterial adaptability to irregular environmental challenges, a quantitative real-time PCR assay was developed that specifically detects the korB gene, which is conserved in all IncP-1 plasmids, in environmental samples. IncP-1 plasmid dynamics in a biopurification system for pesticide wastes were analyzed.


Microbiology spectrum | 2015

Plasmid detection, characterization and ecology

Kornelia Smalla; Sven Jechalke; Eva M. Top

Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. It is thought that to reduce the cost of plasmid carriage, only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness toward environmental changes. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance, and diversity of plasmids in environmental bacteria. Increasingly, cultivation-independent total-community DNA-based methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic-resistance-gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids, as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity, and evolution studies, but numerous challenges still exist.

Collaboration


Dive into the Sven Jechalke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge