Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Kaese is active.

Publication


Featured researches published by Sven Kaese.


Circulation-cardiovascular Genetics | 2011

PITX2c Is Expressed in the Adult Left Atrium, and Reducing Pitx2c Expression Promotes Atrial Fibrillation Inducibility and Complex Changes in Gene Expression

Paulus Kirchhof; Peter C. Kahr; Sven Kaese; Ilaria Piccini; Ismail Vokshi; H. H. Scheld; Heinrich Rotering; Lisa Fortmueller; Sandra Laakmann; Sander Verheule; Ulrich Schotten; Larissa Fabritz; Nigel A. Brown

Background—Intergenic variations on chromosome 4q25, close to the PITX2 transcription factor gene, are associated with atrial fibrillation (AF). We therefore tested whether adult hearts express PITX2 and whether variation in expression affects cardiac function. Methods and Results—mRNA for PITX2 isoform c was expressed in left atria of human and mouse, with levels in right atrium and left and right ventricles being 100-fold lower. In mice heterozygous for Pitx2c (Pitx2c+/−), left atrial Pitx2c expression was 60% of wild-type and cardiac morphology and function were not altered, except for slightly elevated pulmonary flow velocity. Isolated Pitx2c+/− hearts were susceptible to AF during programmed stimulation. At short paced cycle lengths, atrial action potential durations were shorter in Pitx2c+/− than in wild-type. Perfusion with the &bgr;-receptor agonist orciprenaline abolished inducibility of AF and reduced the effect on action potential duration. Spontaneous heart rates, atrial conduction velocities, and activation patterns were not affected in Pitx2c+/− hearts, suggesting that action potential duration shortening caused wave length reduction and inducibility of AF. Expression array analyses comparing Pitx2c+/− with wild-type, for left atrial and right atrial tissue separately, identified genes related to calcium ion binding, gap and tight junctions, ion channels, and melanogenesis as being affected by the reduced expression of Pitx2c. Conclusions—These findings demonstrate a physiological role for PITX2 in the adult heart and support the hypothesis that dysregulation of PITX2 expression can be responsible for susceptibility to AF.


Frontiers in Physiology | 2012

Cardiac electrophysiology in mice: a matter of size.

Sven Kaese; Sander Verheule

Over the last decade, mouse models have become a popular instrument for studying cardiac arrhythmias. This review assesses in which respects a mouse heart is a miniature human heart, a suitable model for studying mechanisms of cardiac arrhythmias in humans and in which respects human and murine hearts differ. Section I considers the issue of scaling of mammalian cardiac (electro) physiology to body mass. Then, we summarize differences between mice and humans in cardiac activation (section II) and the currents underlying the action potential in the murine working myocardium (section III). Changes in cardiac electrophysiology in mouse models of heart disease are briefly outlined in section IV, while section V discusses technical considerations pertaining to recording cardiac electrical activity in mice. Finally, section VI offers general considerations on the influence of cardiac size on the mechanisms of tachy-arrhythmias.


International Journal of Cardiology | 2013

Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice

Paulus Kirchhof; Eloi Marijon; Larissa Fabritz; Na Li; Wei Wang; Tiannan Wang; Kirsten Schulte; Juliane Hanstein; Jan S. Schulte; Mathis Vogel; Nathalie Mougenot; Sandra Laakmann; Lisa Fortmueller; Jens Eckstein; Sander Verheule; Sven Kaese; Ariane Staab; Stephanie Grote-Wessels; Ulrich Schotten; Ghassan Moubarak; Xander H.T. Wehrens; Wilhelm Schmitz; Stéphane N. Hatem; Frank U. Müller

BACKGROUND AND METHODS Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. The substrate of AF is composed of a complex interplay between structural and functional changes of the atrial myocardium often preceding the occurrence of persistent AF. However, there are only few animal models reproducing the slow progression of the AF substrate to the spontaneous occurrence of the arrhythmia. Transgenic mice (TG) with cardiomyocyte-directed expression of CREM-IbΔC-X, an isoform of transcription factor CREM, develop atrial dilatation and spontaneous-onset AF. Here we tested the hypothesis that TG mice develop an arrhythmogenic substrate preceding AF using physiological and biochemical techniques. RESULTS Overexpression of CREM-IbΔC-X in young TG mice (<8weeks) led to atrial dilatation combined with distension of myocardium, elongated myocytes, little fibrosis, down-regulation of connexin 40, loss of excitability with a number of depolarized myocytes, atrial ectopies and inducibility of AF. These abnormalities continuously progressed with age resulting in interatrial conduction block, increased atrial conduction heterogeneity, leaky sarcoplasmic reticulum calcium stores and the spontaneous occurrence of paroxysmal and later persistent AF. This distinct atrial remodelling was associated with a pattern of non-regulated and up-regulated marker genes of myocardial hypertrophy and fibrosis. CONCLUSIONS Expression of CREM-IbΔC-X in TG hearts evokes abnormal growth and development of the atria preceding conduction abnormalities and altered calcium homeostasis and the development of spontaneous and persistent AF. We conclude that transcription factor CREM is an important regulator of atrial growth implicated in the development of an arrhythmogenic substrate in TG mice.


European Journal of Heart Failure | 2012

Further insights into the underlying electrophysiological mechanisms for reduction of atrial fibrillation by ranolazine in an experimental model of chronic heart failure

Gerrit Frommeyer; Marco Schmidt; Catharina Clauß; Sven Kaese; Jörg Stypmann; Christian Pott; Lars Eckardt; Peter Milberg

Ranolazine (RAN) was reported to be effective and safe in converting atrial fibrillation (AF) to sinus rhythm by administration of a single dose (‘pill in the pocket’) to patients with structural heart disease. This study examines the underlying mechanisms for the antiarrhythmic benefit of RAN application in chronic heart failure (CHF).


Heart Rhythm | 2012

Effect of ranolazine on ventricular repolarization in class III antiarrhythmic drug-treated rabbits

Gerrit Frommeyer; Dennis Kaiser; Timo Uphaus; Sven Kaese; Nani Osada; Sridharan Rajamani; Luiz Belardinelli; Günter Breithardt; Lars Eckardt; Peter Milberg

BACKGROUND Ranolazine exhibits a synergistic effect in combination with class III drugs to suppress atrial fibrillation. OBJECTIVE To investigate whether a combination therapy affects repolarization and provokes ventricular tachyarrhythmias (VT) in a sensitive model of proarrhythmia. METHODS Thirty-seven rabbits were assigned to 3 groups and fed with amiodarone (50 mg/kg/d; n = 10) or dronedarone (50 mg/kg/d; n = 10) over a period of 6 weeks. A third group was used as control (n = 17). After obtaining baseline data in Langendorff-perfused control hearts, sotalol (100 μM) was administered in this group. Thereafter, ranolazine (10 μM) was additionally infused on top of amiodarone, dronedarone, or sotalol. RESULTS Chronic treatment with amiodarone or dronedarone as well as sotalol significantly increased action potential duration at 90% repolarization (APD(90)). Additional treatment with ranolazine further increased APD(90) in amiodarone- and dronedarone-pretreated hearts but not in sotalol-treated hearts. Ranolazine increased postrepolarization refractoriness as compared with amiodarone or dronedarone alone owing to a marked effect on the refractory period. In contrast to amiodarone and dronedarone, acute application of sotalol increased dispersion of repolarization (P < .05). Additional treatment with ranolazine did not further increase spatial or temporal dispersion. After lowering extracellular [K(+)] in bradycardic hearts, no proarrhythmia occurred in amiodarone- or dronedarone-treated hearts whereas 11 of 17 sotalol-treated hearts showed early afterdepolarizations and subsequent polymorphic VT. Additional treatment with ranolazine reduced the number of VT episodes in sotalol-treated hearts and did not cause proarrhythmia in combination with amiodarone or dronedarone. CONCLUSIONS Application of ranolazine on top of class III drugs does not cause proarrhythmia despite a marked effect on ventricular repolarization. The effect of ranolazine on the repolarization reserve is associated with the lack of effect on early afterdepolarizations and dispersion of repolarization.


Frontiers in Pharmacology | 2013

Connexin diversity in the heart: insights from transgenic mouse models

Sander Verheule; Sven Kaese

Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders.


Europace | 2014

Electrophysiological profile of vernakalant in an experimental whole-heart model: the absence of proarrhythmia despite significant effect on myocardial repolarization

Gerrit Frommeyer; Peter Milberg; Clauss C; Schmidt M; Ramtin S; Sven Kaese; Grundmann F; Jochen Schulze Grotthoff; Christian Pott; Lars Eckardt

AIM The most recent European Society of Cardiology (ESC) update on atrial fibrillation has introduced vernakalant (VER) for pharmacological cardioversion of atrial fibrillation. The aim of the present study was to investigate the safety profile of VER in a sensitive model of proarrhythmia. METHODS AND RESULTS In 36 Langendorff-perfused rabbit hearts, VER (10, 30 µM, n = 12); ranolazine (RAN, 10, 30 µM, n = 12), or sotalol (SOT, 50; 100 µM, n = 12) were infused after obtaining baseline data. Monophasic action potentials and a 12-lead electrocardiogram showed a significant QT prolongation after application of VER as compared with baseline (10 µM: +25 ms, 30 µM: +50 ms, P < 0.05) accompanied by an increase of action potential duration (APD). The increase in APD90 was accompanied by a more marked increase in effective refractory period (ERP) leading to a significant increase in post-repolarization refractoriness (PRR, 10 µM: +30 ms, 30 µM: +36 ms, P < 0.05). Vernakalant did not affect the dispersion of repolarization. Lowered potassium concentration in bradycardic hearts did not provoke early afterdepolarizations (EADs) or polymorphic ventricular tachycardia (pVT). Comparable results were obtained with RAN. Hundred micromolars of SOT led to an increase in QT interval (+49 ms) and APD90 combined with an increased ERP and PRR (+23 ms). In contrast to VER, 100 µM SOT led to a significant increase in dispersion of repolarization and to the occurrence of EAD in 10 of 12 and pVT in 8 of 12 hearts. CONCLUSION In the present study, application of VER and SOT led to a comparable prolongation of myocardial repolarization. Both drugs increased the PRR. However, VER neither affect the dispersion of repolarization nor induce EAD and therefore did not cause proarrhythmia.


Clinical and Experimental Pharmacology and Physiology | 2017

Antiarrhythmic properties of ivabradine in an experimental model of Short‐ QT ‐ Syndrome

Gerrit Frommeyer; Christian Ellermann; Sven Kaese; Simon Kochhäuser; Philipp S. Lange; Dirk G. Dechering; Lars Eckardt

The If channel inhibitor ivabradine is recommended for treatment of chronic heart failure. However, ivabradine also inhibits human ether‐a‐go‐go (hERG) mediated potassium currents. The aim of the present study was to assess the electrophysiologic effects of ivabradine in an experimental model of short‐QT‐syndrome. Twelve rabbit hearts were isolated and Langendorff‐perfused. After obtaining baseline data, pinacidil, an IK‐ATP channel opener, was infused (1 μmol/L). Eight endo‐ and epicardial monophasic action potentials and a 12‐lead ECG showed a significant abbreviation of QT interval (−32 ms, P<.05) and shortening of action potential duration at 90% of repolarization (APD90; −22 ms, P<.05). The shortening of ventricular repolarization was accompanied by a reduction of effective refractory period (ERP; −20 ms, P<.05). Thereafter, hearts were additionally treated with ivabradine (5 μmol/L) leading to an increase of QT interval (+31 ms, P<.05), APD90 (+15 ms, P<.05) as well as of ERP (+38 ms, P<.05) and post‐repolarization refractoriness (PRR, +33 ms, P<.05) as compared with sole pinacidil infusion. Under baseline conditions, ventricular fibrillation (VF) was inducible by a standardized pacing protocol including programmed stimulation and burst stimulation in 3 of 12 hearts (6 episodes). After application of 1 μmol/L pinacidil, 6 of 12 hearts were inducible (22 episodes). Additional infusion of 5 μmol/L ivabradine led to a significant suppression of VF. Only two episodes could be induced in 1 of 12 hearts. In the present study ivabradine reversed the electrophysiologic effects of pharmacologically simulated short‐QT syndrome. Ivabradine demonstrated antiarrhythmic properties based on an increase of both ERP and PRR.


Respiratory Care | 2016

Successful Use of Early Percutaneous Dilatational Tracheotomy and the No Sedation Concept in Respiratory Failure in Critically Ill Obese Subjects.

Sven Kaese; Marie Zander; Pia Lebiedz

BACKGROUND: The prevalence of obesity in developed countries is rising. Currently, Europe has a prevalence of 9–30% with significant impact on public health systems. Obese patients in ICUs require special management and treatment. Altered anatomy in obese patients complicates procedures such as mechanical ventilation. Obesity affects cardiopulmonary physiology and requires elevated ventilation pressures. In our retrospective study, we determined the effect of early percutaneous dilatational tracheotomy (PDT) and cessation of sedation on respiratory parameters in severely obese subjects. METHODS: From June 2010 to July 2014, we included all subjects with a body weight of >130 kg (body mass index >35 kg/m2) and respiratory failure who were admitted to the medical ICU of the University Hospital of Münster. All subjects were treated with early PDT and immediate cessation of sedative drugs. We compared ventilator parameters and blood gas analysis before and after PDT. Parameters were recorded on days 0, 1, 3, and 5. Day 0 represents values during ventilation via an endotracheal tube, and days 1, 3, 5 represent values during ventilation via a tracheotomy tube. PDT was performed on day 0 after recording values during ventilation via an endotracheal tube. RESULTS: We included 23 subjects with a mean body mass index of 53.1 kg/m2 and respiratory failure. After PDT and cessation of sedation, the required ventilation pressures and FIO2 could be rapidly reduced (P < .001), whereas blood gas parameters significantly improved. We observed no severe PDT-associated complications in our cohort. CONCLUSIONS: In severe obesity, respiratory failure might be increased by problems in mechanical ventilation due to required high pressures and obesity-induced pulmonary restriction. Rapid tracheotomy with reduction of dead-space ventilation and airway resistance as well as cessation of sedation to enable spontaneous breathing might be a key factor in the therapy of respiratory failure.


Frontiers in Pharmacology | 2017

The Effects of SEA0400 on Ca2+ Transient Amplitude and Proarrhythmia Depend on the Na+/Ca2+ Exchanger Expression Level in Murine Models

Nils Bögeholz; Jan S. Schulte; Sven Kaese; B. Klemens Bauer; Paul Pauls; Dirk G. Dechering; Gerrit Frommeyer; Joshua I. Goldhaber; Uwe Kirchhefer; Lars Eckardt; Christian Pott; Frank Müller

Background/Objective: The cardiac Na+/Ca2+ exchanger (NCX) has been identified as a promising target to counter arrhythmia in previous studies investigating the benefit of NCX inhibition. However, the consequences of NCX inhibition have not been investigated in the setting of altered NCX expression and function, which is essential, since major cardiac diseases (heart failure/atrial fibrillation) exhibit NCX upregulation. Thus, we here investigated the effects of the NCX inhibitor SEA0400 on the Ca2+ transient amplitude and on proarrhythmia in homozygous NCX overexpressor (OE) and heterozygous NCX knockout (hetKO) mice compared to corresponding wild-types (WTOE/WThetKO). Methods/Results: Ca2+ transients of field-stimulated isolated ventricular cardiomyocytes were recorded with fluo-4-AM or indo-1-AM. SEA0400 (1 μM) significantly reduced NCX forward mode function in all mouse lines. SEA0400 (1 μM) significantly increased the amplitude of field-stimulated Ca2+ transients in WTOE, WThetKO, and hetKO, but not in OE (% of basal; OE = 98.7 ± 5.0; WTOE = 137.8 ± 5.2*; WThetKO = 126.3 ± 6.0*; hetKO = 140.6 ± 12.8*; *p < 0.05 vs. basal). SEA0400 (1 μM) significantly reduced the number of proarrhythmic spontaneous Ca2+ transients (sCR) in OE, but increased it in WTOE, WThetKO and hetKO (sCR per cell; basal/+SEA0400; OE = 12.5/3.7; WTOE = 0.2/2.4; WThetKO = 1.3/8.8; hetKO = 0.2/5.5) and induced Ca2+ overload with subsequent cell death in hetKO. Conclusion: The effects of SEA0400 on Ca2+ transient amplitude and the occurrence of spontaneous Ca2+ transients as a proxy measure for inotropy and cellular proarrhythmia depend on the NCX expression level. The antiarrhythmic effect of SEA0400 in conditions of increased NCX expression promotes the therapeutic concept of NCX inhibition in heart failure/atrial fibrillation. Conversely, in conditions of reduced NCX expression, SEA0400 suppressed the NCX function below a critical level leading to adverse Ca2+ accumulation as reflected by an increase in Ca2+ transient amplitude, proarrhythmia and cell death. Thus, the remaining NCX function under inhibition may be a critical factor determining the inotropic and antiarrhythmic efficacy of SEA0400.

Collaboration


Dive into the Sven Kaese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pia Lebiedz

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge