Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Kathöfer is active.

Publication


Featured researches published by Sven Kathöfer.


Journal of Biological Chemistry | 1999

Deletion of Protein Kinase A Phosphorylation Sites in the HERG Potassium Channel Inhibits Activation Shift by Protein Kinase A

Dierk Thomas; Wei Zhang; Christoph A. Karle; Sven Kathöfer; Wolfgang Schöls; Wolfgang Kübler; Johann Kiehn

We investigated the role of protein kinase A (PKA) in regulation of the human ether-a-go-go-related gene (HERG) potassium channel activation. HERG clones with single mutations destroying one of four consensus PKA phosphorylation sites (S283A, S890A, T895A, S1137A), as well as one clone carrying all mutations with no PKA phosphorylation sites (HERG 4m) were constructed. These clones were expressed heterologously inXenopus oocytes, and HERG potassium currents were measured with the two microelectrode voltage clamp technique. Application of the cAMP-specific phosphodiesterase (PDE IV) inhibitor Ro-20–1724 (100 μm), which results in an increased cAMP level and PKA stimulation, induced a reduction of HERG wild type outward currents by 19.1% due to a shift in the activation curve of 12.4 mV. When 100 μm Ro-20–1724 was applied to the HERG 4mchannel, missing all PKA sites, there was no significant shift in the activation curve, and the current amplitude was not reduced. Furthermore, the adenylate cyclase activator forskolin that leads to PKA activation (400 μm, 60 min), shifted HERG wild type channel activation by 14.1 mV and reduced currents by 39.9%, whereas HERG 4m channels showed only a small shift of 4.3 mV and a weaker current reduction of 22.3%. We conclude that PKA regulates HERG channel activation, and direct phosphorylation of the HERG channel protein has a functional role that may be important in regulation of cardiac repolarization.


Cardiovascular Research | 2001

Antiarrhythmic drug carvedilol inhibits HERG potassium channels.

Christoph A. Karle; Volker A. W. Kreye; Dierk Thomas; Katja Röckl; Sven Kathöfer; Wei Zhang; Johann Kiehn

OBJECTIVE The aryloxypropanolamine carvedilol is a multiple action cardiovascular drug with blocking effects on alpha-receptors, beta-receptors, Ca(2+)-channels, Na(+)-channels and various native cardiac K(+) channels, thereby prolonging the cardiac action potential. In a number of clinical trials with patients suffering from congestive heart failure, carvedilol appeared to be superior to other beta-blocking agents in reducing total mortality. Given the multiple pharmacological actions of carvedilol, this may be due to specific channel blockade rather than beta-antagonistic activity. Since human ether-a-go-go related gene (HERG) K(+)channels play a critical role in the pathogenesis of cardiac arrhythmias and sudden cardiac death, the effects of carvedilol on HERG K(+)channels were investigated. METHODS Double-electrode voltage-clamp experiments were performed on HERG potassium channels which were expressed heterologously in Xenopus oocytes. RESULTS Carvedilol at a concentration of 10 microM blocked HERG potassium tail currents by 47%. The electrophysiological characteristics of HERG, i.e. activation, steady-state inactivation and recovery from inactivation were not affected by carvedilol. Inhibition of current gradually increased from 0% immediately after the test pulse to about 80% at 600 ms with subsequent marginal changes of current kinetics during the resting 29 s, indicating a very fast open channel block by carvedilol as the major blocking mechanism. CONCLUSION This is the first study demonstrating that carvedilol blocks HERG potassium channels. The biophysical data presented in this study with a potentially antiarrhythmic effect may contribute to the positive outcome of clinical trials with carvedilol.


Cardiovascular Research | 2003

Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein

Dierk Thomas; Wei Zhang; Kezhong Wu; Anna-Britt Wimmer; Bernd Gut; Gunnar Wendt-Nordahl; Sven Kathöfer; Volker A. W. Kreye; Hugo A. Katus; Wolfgang Schoels; Johann Kiehn; Christoph A. Karle

OBJECTIVE Patients with HERG-associated long QT syndrome typically develop tachyarrhythmias during physical or emotional stress. Previous studies have revealed that activation of the beta-adrenergic system and consecutive elevation of the intracellular cAMP concentration regulate HERG channels via protein kinase A-mediated phosphorylation of the channel protein and via direct interaction with the cAMP binding site of HERG. In contrast, the influence of the alpha-adrenergic signal transduction cascade on HERG currents as suggested by recent reports is less well understood. The aim of the present study was to elucidate the biochemical pathways of the protein kinase C (PKC)-dependent regulation of HERG currents. METHODS HERG channels were heterologously expressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique. RESULTS Application of the phorbol ester PMA, an unspecific protein kinase activator, shifted the voltage dependence of HERG activation towards more positive potentials. This effect could be mimicked by activation of conventional PKC isoforms with thymeleatoxin. Coexpression of HERG with the beta-subunits minK or hMiRP1 did not alter the effect of PMA. Specific inhibition of PKC abolished the PMA-induced activation shift, suggesting that PKC is required within the regulatory mechanism. The PMA-induced effect could still be observed when the PKC-dependent phosphorylation sites in HERG were deleted by mutagenesis. Cytoskeletal proteins such as actin filaments or microtubules did not affect the HERG activation shift. CONCLUSION In addition to the known effects of PKA and cAMP, HERG channels are also modulated by PKC. The molecular mechanisms of this PKC-dependent process are not completely understood but do not depend on direct PKC-dependent phosphorylation of the channel.


Circulation | 2005

QTc Prolongation by Grapefruit Juice and Its Potential Pharmacological Basis HERG Channel Blockade by Flavonoids

Edgar Zitron; Eberhard P. Scholz; Robert W. Owen; Sonja Lück; Claudia Kiesecker; Dierk Thomas; Sven Kathöfer; Feraydoon Niroomand; Johann Kiehn; Volker A. W. Kreye; Hugo A. Katus; Wolfgang Schoels; Christoph A. Karle

Background—A high intake of dietary flavonoids, which are abundant in fruits, vegetables, tea, and wine, is known to reduce cardiovascular mortality. The effects of flavonoids on cardiac electrophysiology, which theoretically may have both antiarrhythmic and proarrhythmic consequences, have not been studied systematically to date. Methods and Results—We screened a broad spectrum of flavonoids for their inhibitory activity on HERG channels by using heterologous expression in Xenopus oocytes. At a concentration of 1 mmol/L, 10 compounds caused a significant inhibition of HERG currents, whereas 11 other flavonoids had no effect. The IC50 value for HERG block by naringenin, the most potent inhibitor, was 102.3 &mgr;mol/L in Xenopus oocytes and 36.5 &mgr;mol/L in HEK cells. To demonstrate the physiological relevance of these findings, we studied the effects of pink grapefruit juice, which contains large amounts of naringenin glycosides (>1000 &mgr;mol/L), in human volunteers. In 10 persons, we observed a peak QTc prolongation of 12.5±4.2 ms 5 hours after oral ingestion of 1 L of grapefruit juice. This effect was significant (P=0.02). Conclusions—We found a significant QTc prolongation by grapefruit juice in healthy volunteers, probably caused by block of HERG channels by flavonoids. These findings reveal new perspectives on the potential for dietary modification of cardiac electrophysiology.


Circulation | 2002

Human Cardiac Inwardly-Rectifying K+ Channel Kir2.1b Is Inhibited by Direct Protein Kinase C-Dependent Regulation in Human Isolated Cardiomyocytes and in an Expression System

Christoph A. Karle; Edgar Zitron; Wei Zhang; Gunnar Wendt-Nordahl; Sven Kathöfer; Dierk Thomas; Bernd Gut; Eberhard P. Scholz; Christian-Friedrich Vahl; Hugo A. Katus; Johann Kiehn

Background—Protein kinases A (PKA) and C (PKC) are activated in ischemic preconditioning and heart failure, conditions in which patients develop arrhythmias. The native inward rectifier potassium current (IK1) plays a central role in the stabilization of the resting membrane potential and the process of arrhythmogenesis. This study investigates the functional relationship between PKC and IK1. Methods and Results—In whole-cell patch-clamp experiments with isolated human atrial cardiomyocytes, the IK1 was reduced by 41% when the nonspecific activator of PKC phorbol 12 myristate 13-acetate (PMA; 100 nmol/L) was applied. To investigate the effects of PKC on cloned channel underlying parts of the native IK1, we expressed Kir2.1b heterologously in Xenopus oocytes and measured currents with the double-electrode voltage-clamp technique. PMA decreased the current by an average of 68%, with an IC50 of 0.68 nmol/L. The inactive compound 4-&agr;-PMA was ineffective. Thymeleatoxin and 1-oleolyl-2-acetyl-sn-glycerol, 2 specific activators of PKC, produced effects similar to those of PMA. Inhibitors of PKC, ie, staurosporine and chelerytrine, could inhibit the PMA effect (1 nmol/L) significantly. After mutation of the PKC phosphorylation sites (especially S64A and T353A), PMA became ineffective. Conclusions—The human IK1 in atrial cardiomyocytes and one of its underlying ion channels, the Kir2.1b channel, is inhibited by PKC-dependent signal transduction pathways, possibly contributing to arrhythmogenesis in patients with structural heart disease in which PKC is activated.


Cardiovascular Research | 2002

Rapid component IKr of the guinea-pig cardiac delayed rectifier K+ current is inhibited by β1-adrenoreceptor activation, via cAMP/protein kinase A-dependent pathways

Christoph A. Karle; Edgar Zitron; Wei Zhang; Sven Kathöfer; Wolfgang Schoels; Johann Kiehn

OBJECTIVE The antiarrhythmic potential of betablockers contributes to their beneficial effects in the treatment of cardiac diseases, although the molecular basis of their class II antiarrhythmic action has not been clarified yet. METHODS To investigate a putative functional link between beta-adrenoreceptors and the fast component of cardiac delayed rectifier K(+) channels (I(Kr)), whole-cell patch-clamp experiments were performed with isolated guinea-pig ventricular myocytes. Tail currents of I(Kr) were measured at -40 mV after short (200 ms) test pulses to +40 mV. RESULTS After application of the unspecific beta-receptor agonist isoproterenol (10 microM) for 12 min, the I(Kr) tail current was decreased by 72%, with an IC(50) of 1.4 microM. The specific beta(1)-blocker CGP207120A (10 microM) significantly attenuated the isoproterenol effect (net 24% decrease). The specific beta(1)-agonist xamoterol (10 microM), could mimic the isoproterenol effect (58% decrease). Modulators of beta(2)- or beta(3)-adrenoreceptors were far less effective. When isoproterenol or xamoterol were combined with KT5720 (2.5 microM), a specific inhibitor of protein kinase A (PKA), their effects were drastically reduced, indicating that PKA presumably mediates the beta(1)-adrenergic inhibition of I(Kr). Tail current reductions by cAMP, forskolin, PKA catalytic subunit and a combination of PKA holoenzyme and cAMP support an involvement of PKA in the regulation of I(Kr). CONCLUSIONS The functional link between I(Kr) and the beta(1)-adrenergic receptor involving PKA may play an important role in arrhythmogenesis and contribute to the antiarrhythmic action of clinically used beta(1)-blockers.


British Journal of Pharmacology | 2003

The antipsychotic drug chlorpromazine inhibits HERG potassium channels

Dierk Thomas; Kezhong Wu; Sven Kathöfer; Hugo A. Katus; Wolfgang Schoels; Johann Kiehn; Christoph A. Karle

Acquired long QT syndrome (aLQTS) is caused by prolongation of the cardiac action potential because of blockade of cardiac ion channels and delayed repolarization of the heart. Patients with aLQTS carry an increased risk for torsade de pointes arrhythmias and sudden cardiac death. Several antipsychotic drugs may cause aLQTS. Recently, cases of QTc prolongation and torsade de pointes associated with chlorpromazine treatment have been reported. Blockade of human ether‐a‐go‐go‐related gene (HERG) potassium channels, which plays a central role in arrhythmogenesis, has previously been reported to occur with chlorpromazine, but information on the mechanism of block is currently not available. We investigated the effects of chlorpromazine on cloned HERG potassium channels to determine the biophysical mechanism of block. HERG channels were heterologously expressed in Xenopus laevis oocytes, and ion currents were measured using the two‐microelectrode voltage‐clamp technique. Chlorpromazine blocked HERG potassium channels with an IC50 value of 21.6 μM and a Hill coefficient of 1.11. Analysis of the voltage dependence of block revealed a reduction of inhibition at positive membrane potentials. Inhibition of HERG channels by chlorpromazine displayed reverse frequency dependence, that is, the amount of block was lower at higher stimulation rates. No marked changes in electrophysiological parameters such as voltage dependence of activation or inactivation, or changes of the inactivation time constant were observed. In conclusion, HERG channels were blocked in the closed and activated states, and unblocking occurred very slowly.


British Journal of Pharmacology | 2009

Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein

Jakob Gierten; Eckhard Ficker; Ramona Bloehs; K Schlömer; Sven Kathöfer; Eberhard P. Scholz; Edgar Zitron; Claudia Kiesecker; Alexander Bauer; Rüdiger Becker; Hugo A. Katus; Christoph A. Karle; Dierk Thomas

Two‐pore‐domain potassium (K2P) channels mediate potassium background (or ‘leak’) currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels.


British Journal of Pharmacology | 2003

Acute effects of dronedarone on both components of the cardiac delayed rectifier K+ current, HERG and KvLQT1/minK potassium channels

Dierk Thomas; Sven Kathöfer; Wei Zhang; Kezhong Wu; Anna-Britt Wimmer; Edgar Zitron; Volker A. W. Kreye; Hugo A. Katus; Wolfgang Schoels; Christoph A. Karle; Johann Kiehn

Dronedarone is a noniodinated benzofuran derivative that has been synthesized to overcome the limiting iodine‐associated adverse effects of the potent antiarrhythmic drug amiodarone. In this study, the acute electrophysiological effects of dronedarone on repolarizing potassium channels were investigated to determine the class III antiarrhythmic action of this compound. HERG and KvLQT1/minK potassium channels conduct the delayed rectifier potassium current IK in human heart, being a primary target for class III antiarrhythmic therapy. HERG and KvLQT1/minK were expressed heterologously in Xenopus laevis oocytes, and the respective potassium currents were recorded using the two‐microelectrode voltage‐clamp technique. Dronedarone blocked HERG channels with an IC50 value of 9.2 μM and a maximum tail current reduction of 85.2%. HERG channels were blocked in the closed, open, and inactivated states. The half‐maximal activation voltage was shifted by −6.1 mV, and HERG current block by dronedarone was voltage‐dependent, but not use‐dependent. Dronedarone exhibited a weaker block of KvLQT1/minK currents (33.2% at 100 μM drug concentration), without causing significant changes in the corresponding current–voltage relationships. In conclusion, these data demonstrate that dronedarone is an antagonist of cloned HERG potassium channels, with additional inhibitory effects on KvLQT1/minK currents at higher drug concentrations, providing a molecular mechanism for the class III antiarrhythmic action of the drug.


Biochemical and Biophysical Research Communications | 2009

Biophysical properties of zebrafish ether-à-go-go related gene potassium channels

Eberhard P. Scholz; Nora Niemer; David Hassel; Edgar Zitron; Heinrich F. Bürgers; Ramona Bloehs; Claudia Seyler; Daniel Scherer; Dierk Thomas; Sven Kathöfer; Hugo A. Katus; Wolfgang Rottbauer; Christoph A. Karle

The zebrafish is increasingly recognized as an animal model for the analysis of hERG-related diseases. However, functional properties of the zebrafish orthologue of hERG have not been analyzed yet. We heterologously expressed cloned ERG channels in Xenopus oocytes and analyzed biophysical properties using the voltage clamp technique. zERG channels conduct rapidly activating and inactivating potassium currents. However, compared to hERG, the half-maximal activation voltage of zERG current is shifted towards more positive potentials and the half maximal steady-state inactivation voltage is shifted towards more negative potentials. zERG channel activation is delayed and channel deactivation is accelerated significantly. However, time course of zERG conducted current under action potential clamp is highly similar to the human orthologue. In summary, we show that ERG channels in zebrafish exhibit biophysical properties similar to the human orthologue. Considering the conserved channel function, the zebrafish represents a valuable model to investigate human ERG channel related diseases.

Collaboration


Dive into the Sven Kathöfer's collaboration.

Top Co-Authors

Avatar

Christoph A. Karle

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edgar Zitron

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Kiehn

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Eberhard P. Scholz

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Claudia Kiesecker

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Schoels

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Ramona Bloehs

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge