Sven Lindner
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Lindner.
Nature Genetics | 2012
Jan J. Molenaar; Raquel Domingo-Fernández; Marli E. Ebus; Sven Lindner; Jan Koster; Ksenjia Drabek; Pieter Mestdagh; Peter van Sluis; Linda J. Valentijn; Johan van Nes; Marloes Broekmans; Franciska Haneveld; Richard Volckmann; Isabella Bray; Lukas C. Heukamp; Annika Sprüssel; Theresa Thor; Kristina Kieckbusch; Ludger Klein-Hitpass; Matthias Fischer; Jo Vandesompele; Alexander Schramm; Max M. van Noesel; Luigi Varesio; Franki Speleman; Angelika Eggert; Raymond L. Stallings; Huib N. Caron; Rogier Versteeg; Johannes H. Schulte
LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B–let-7–MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.
Science Translational Medicine | 2012
Lukas C. Heukamp; Theresa Thor; Alexander Schramm; Katleen De Preter; Candy Kumps; Bram De Wilde; Andrea Odersky; Martin Peifer; Sven Lindner; Annika Spruessel; Filip Pattyn; Pieter Mestdagh; Björn Menten; Steffi Kuhfittig-Kulle; Annette Künkele; Katharina König; Lydia Meder; Sampurna Chatterjee; Roland T. Ullrich; Stefanie Schulte; Jo Vandesompele; Franki Speleman; Reinhard Büttner; Angelika Eggert; Johannes H. Schulte
ALK inhibitors induce complete tumor regression in a mouse model of ALK-driven neuroblastoma. Driving Neuroblastoma: A wALK in the Park Correlation doesn’t prove causation. For example, even though you may always see your neighbors walking their dog right before you find that odiferous pile of unscooped pooh, unless you directly witness a walkaway or use DNA testing to trace the culprit, you can’t prove that they did it. Demonstrating causation is even more important in cancer biology—just finding a prevalent mutation in people with a particular type of cancer isn’t enough to show that mutation is actually relevant to disease. Heukamp et al. now address the potential causative role of anaplastic lymphoma kinase (ALK) mutations in neuroblastoma. ALK mutations are found in most familial and some sporadic cases of neuroblastoma, a malignant tumor that affects children. To determine whether ALK mutations can drive the development of neuroblastoma, the authors introduced the most common ALK mutation into neural crest stem cells in mice. Tumors driven by this mutation resembled human neuroblastomas physiologically and mimicked the genetic structure of the disease. Mutated ALK and MYCN, another driver mutation for neuroblastoma, combined synergistically for tumor development. Heukamp et al. then used their new model to demonstrate that an ALK inhibitor currently in preclinical testing induced complete tumor regression in these mice; however, it remains to be seen whether these inhibitors will be useful in treating neuroblastoma in people. Activating anaplastic lymphoma kinase (ALK) mutations were recently detected in most familial and 10% of sporadic neuroblastomas. However, the role of mutated ALK in tumorigenesis remains elusive. We demonstrate that targeted expression of the most frequent and aggressive variant, ALKF1174L, is tumorigenic in mice. Tumors resembled human neuroblastomas in morphology, metastasis pattern, gene expression, and the presence of neurosecretory vesicles as well as synaptic structures. This ALK-driven neuroblastoma mouse model precisely recapitulated the genetic spectrum of the disease. Chromosomal aberrations were syntenic to those in human neuroblastoma, including 17q gain and MYCN oncogene amplification. Targeted ALKF1174L and MYCN coexpression revealed a strong synergism in inducing neuroblastoma with minimal chromosomal aberrations, suggesting that fewer secondary hits are required for tumor induction if both oncoproteins are targeted. Treatment of ALKF1174L transgenic mice with the ALK inhibitor TAE-684 induced complete tumor regression, indicating that tumor cells were addicted to ALKF1174L activity. We conclude that an activating mutation within the ALK kinase domain is sufficient to induce neuroblastoma development, and ALK inhibitors show promise for treating human neuroblastomas harboring ALK mutations.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ina Oehme; Jan Peter Linke; Barbara C. Böck; Till Milde; Marco Lodrini; Bettina Hartenstein; Inga Wiegand; Christian Eckert; Wilfried Roth; Marcel Kool; Sylvia Kaden; Hermann Josef Gröne; Jh Schulte; Sven Lindner; Anne Hamacher-Brady; Nathan R. Brady; Hedwig E. Deubzer; Olaf Witt
Significance Resistance to chemotherapy is one of the major challenges in oncology. Neuroblastoma is the most common extracranial solid tumor in childhood, and the successful response of high-risk patients to chemotherapy remains poor. Our work showed that the so far poorly studied histone deacetylase (HDAC)10 promotes autophagy-mediated cell survival and signals poor outcome in independent high-risk patient cohorts. Inhibition of HDAC10 sensitized tumor cells for cytotoxic drug treatment. These results offer HDAC10 as a potential biomarker for treatment response of high-risk tumors and open new avenues for developing selective treatment strategies to bypass drug resistance of these tumors. Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.
Oncogene | 2013
Johannes H. Schulte; Sven Lindner; Anna Bohrer; Jochen Maurer; K. De Preter; Steve Lefever; Lukas C. Heukamp; Stefan Schulte; Jan J. Molenaar; Rogier Versteeg; Theresa Thor; Annette Künkele; Jo Vandesompele; F. Speleman; Hubert Schorle; Angelika Eggert; Alexander Schramm
Neuroblastoma is an embryonal tumor with a heterogeneous clinical course. The tumor is presumed to be derived from the neural crest, but the cells of origin remain to be determined. To date, few recurrent genetic changes contributing to neuroblastoma formation, such as amplification of the MYCN oncogene and activating mutations of the ALK oncogene, have been identified. The possibility to model neuroblastoma in mice allows investigation of the cell of origin hypothesis in further detail. Here we present the evidence that murine neural crest progenitor cells can give rise to neuroblastoma upon transformation with MYCN or ALKF1174L. For this purpose we used JoMa1, a multipotent neural crest progenitor cell line, which is kept in a viable and undifferentiated state by a tamoxifen-activated c-Myc transgene (c-MycERT). Expression of MYCN or ALKF1174L, one of the oncogenic ALK variants identified in primary neuroblastomas, enabled these cells to grow independently of c-MycERT activity in vitro and caused formation of neuroblastoma-like tumors in vivo in contrast to parental JoMa1 cells and JoMa1 cells-expressing TrkA or GFP. Tumorigenicity was enhanced upon serial transplantation of tumor-derived cells, and tumor cells remained susceptible to the MYC-inhibitor, NBT-272, indicating that cell growth depended on functional MYCN. Our findings support neural crest progenitor cells as the precursor cells of neuroblastoma, and indicate that neuroblastomas arise as their malignant progeny.
Oncogene | 2012
Evan E. Santo; Marli E. Ebus; Jan Koster; Johannes H. Schulte; Arjan Lakeman; P van Sluis; Joëlle Vermeulen; David Gisselsson; Ingrid Øra; Sven Lindner; Patrick G. Buckley; Raymond L. Stallings; Jo Vandesompele; Angelika Eggert; Huib N. Caron; Rogier Versteeg; Jan J. Molenaar
Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion products that are tumor driving. To identify such events we analyzed a series of neuroblastomas by comparative genomic hybridization and single-nucleotide polymorphism arrays and integrated these data with Affymetrix mRNA profiling data with the bioinformatic tool R2 (http://r2.amc.nl). We identified three neuroblastoma samples with small interstitial deletions at 11q23, upstream of the forkhead-box R1 transcription factor (FOXR1). Genes at the proximal side of the deletion were fused to FOXR1, resulting in fusion transcripts of MLL–FOXR1 and PAFAH1B2–FOXR1. FOXR1 expression has only been detected in early embryogenesis. Affymetrix microarray analysis showed high FOXR1 mRNA expression exclusively in the neuroblastomas with micro-deletions and rare cases of other tumor types, including osteosarcoma cell line HOS. RNAi silencing of FOXR1 strongly inhibited proliferation of HOS cells and triggered apoptosis. Expression profiling of these cells and reporter assays suggested that FOXR1 is a negative regulator of fork-head box factor-mediated transcription. The neural crest stem cell line JoMa1 proliferates in culture conditional to activity of a MYC-ER transgene. Over-expression of the wild-type FOXR1 could functionally replace MYC and drive proliferation of JoMa1. We conclude that FOXR1 is recurrently activated in neuroblastoma by intrachromosomal deletion/fusion events, resulting in overexpression of fusion transcripts. Forkhead-box transcription factors have not been previously implicated in neuroblastoma pathogenesis. Furthermore, this is the first identification of intrachromosomal fusion genes in neuroblastoma.
Science Signaling | 2015
Kristina B. Emdal; Anna-Kathrine Pedersen; Dorte B. Bekker-Jensen; Kalliopi Tsafou; Heiko Horn; Sven Lindner; Johannes H. Schulte; Angelika Eggert; Lars Juhl Jensen; Chiara Francavilla; J. Olsen
Proteomic analysis of neurotrophin signaling identifies an inhibitory E3 ubiquitin ligase. Proteomic analysis reveals an inhibitor Neurotrophins, such as nerve growth factor (NGF), control the differentiation and proliferation of neuronal precursors, and the outcome depends on the duration of the signal and neurotrophin-receptor pair. NGF binding to the receptor tyrosine kinase TrkA induces neuronal differentiation and neurite outgrowth. By mediating the attachment of ubiquitin chains, E3 ubiquitin ligases stimulate the internalization and degradation, and hence reduce the activity, of various receptors. Emdal et al. performed a temporal analysis by mass spectrometry of changes in the proteome in response to NGF in neuroblastoma cells and found that NGF not only promoted the activation of TrkA but also signaled its degradation by promoting the interaction of TrkA with the E3 ubiquitin ligase Cbl-b, which resulted in the ubiquitylation and degradation of both proteins. Neuroblastoma cells with reduced Cbl-b had increased TrkA signaling and produced longer neurites. In addition to identifying this inhibitory role for Cbl-b, the proteomic data are a resource for further investigation of TrkA signaling dynamics. SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)–mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry–based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites.
The Cerebellum | 2017
Annika K. Wefers; Sven Lindner; Johannes H. Schulte; Ulrich Schüller
LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.
Oncotarget | 2017
Kristian W. Pajtler; Natalie Sadowski; Sandra Ackermann; Kristina Althoff; Kerstin Schönbeck; Katharina Batzke; Simon Schäfers; Andrea Odersky; Lukas C. Heukamp; Kathy Astrahantseff; Annette Künkele; Hedwig E. Deubzer; Alexander Schramm; Annika Sprüssel; Theresa Thor; Sven Lindner; Angelika Eggert; Matthias Fischer; Johannes H. Schulte
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that promotes G2/M-phase transition, is expressed in elevated levels in high-risk neuroblastomas and correlates with unfavorable patient outcome. Recently, we and others have presented PLK1 as a potential drug target for neuroblastoma, and reported that the BI2536 PLK1 inhibitor showed antitumoral actvity in preclinical neuroblastoma models. Here we analyzed the effects of GSK461364, a competitive inhibitor for ATP binding to PLK1, on typical tumorigenic properties of preclinical in vitro and in vivo neuroblastoma models. GSK461364 treatment of neuroblastoma cell lines reduced cell viability and proliferative capacity, caused cell cycle arrest and massively induced apoptosis. These phenotypic consequences were induced by treatment in the low-dose nanomolar range, and were independent of MYCN copy number status. GSK461364 treatment strongly delayed established xenograft tumor growth in nude mice, and significantly increased survival time in the treatment group. These preclinical findings indicate PLK1 inhibitors may be effective for patients with high-risk or relapsed neuroblastomas with upregulated PLK1 and might be considered for entry into early phase clinical trials in pediatric patients.
Oncotarget | 2017
Bram De Wilde; Anneleen Beckers; Sven Lindner; Althoff Kristina; Katleen De Preter; Pauline Depuydt; Pieter Mestdagh; Tom Sante; Steve Lefever; Falk Hertwig; Zhiyu Peng; Leming Shi; Sangkyun Lee; Elien Vandermarliere; Lennart Martens; Björn Menten; Alexander Schramm; Matthias Fischer; Johannes H. Schulte; Jo Vandesompele; Frank Speleman
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems (ALK, Th-MYCN, Dbh-MYCN and Lin28b). The murine tumors revealed a low number of genomic alterations – in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Science Signaling | 2014
Sven Lindner; Anton Henssen; Kathy Astrahantseff; Johannes H. Schulte
Identification of a crucial mediator between abnormally active ALK and MYCN reveals a potential combination therapy for several tumor types. The gene expressing the receptor tyrosine kinase anaplastic lymphoma kinase (ALK) is mutated and aberrantly expressed in several cancers. The clinical efficacy of the ALK inhibitor, crizotinib, lags behind expectations for treating MYCN-amplified, ALK-mutant neuroblastoma, a deadly childhood cancer. In this issue of Science Signaling, Umapathy et al. identify the kinase extracellular signal–regulated kinase 5 (ERK5) as a central mediator that enables ALK to boost MYCN expression, and they show that inhibiting ERK5 in concert with ALK reduced neuroblastoma cell viability in vitro and in xenograft tumor models. This report has important clinical implications for the treatment of patients with neuroblastoma or other tumors that overexpress MYC(N) and harbor ALK mutations, such as non–small-cell lung cancer.