Sven P. Wichert
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven P. Wichert.
The Journal of Neuroscience | 2010
Sandra Goebbels; Jan H. Oltrogge; Robert Kemper; Ingo Heilmann; Ingo Bormuth; Susanne Wolfer; Sven P. Wichert; Wiebke Möbius; Xin Liu; Corinna Lappe-Siefke; Moritz J. Rossner; Matthias Groszer; Ueli Suter; Jens Frahm; Susann Boretius; Klaus-Armin Nave
In the developing nervous system, constitutive activation of the AKT/mTOR (mammalian target of rapamycin) pathway in myelinating glial cells is associated with hypermyelination of the brain, but is reportedly insufficient to drive myelination by Schwann cells. We have hypothesized that it requires additional mechanisms downstream of NRG1/ErbB signaling to trigger myelination in the peripheral nervous system. Here, we demonstrate that elevated levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) have developmental effects on both oligodendrocytes and Schwann cells. By generating conditional mouse mutants, we found that Pten-deficient Schwann cells are enhanced in number and can sort and myelinate axons with calibers well below 1 μm. Unexpectedly, mutant glial cells also spirally enwrap C-fiber axons within Remak bundles and even collagen fibrils, which lack any membrane surface. Importantly, PIP3-dependent hypermyelination of central axons, which is observed when targeting Pten in oligodendrocytes, can also be induced after tamoxifen-mediated Cre recombination in adult mice. We conclude that it requires distinct PIP3 effector mechanisms to trigger axonal wrapping. That myelin synthesis is not restricted to early development but can occur later in life is relevant to developmental disorders and myelin disease.
The Journal of Neuroscience | 2008
Ulyana Lalo; Yuri Pankratov; Sven P. Wichert; Moritz J. Rossner; R. Alan North; Frank Kirchhoff; Alexei Verkhratsky
ATP plays an important role in signal transduction between neuronal and glial circuits and within glial networks. Here we describe currents activated by ATP in astrocytes acutely isolated from cortical brain slices by non-enzymatic mechanical dissociation. Brain slices were prepared from transgenic mice that express enhanced green fluorescent protein under the control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp. Exogenous ATP evoked inward currents in 75 of 81 astrocytes. In the majority (∼65%) of cells, ATP-induced responses comprising a fast and delayed component; in the remaining subpopulation of astrocytes, ATP triggered a smoother response with rapid peak and slowly decaying plateau phase. The fast component of the response was sensitive to low concentrations of ATP (with EC50 of ∼40 nm). All ATP-induced currents were blocked by pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS); they were insensitive to ivermectin. Quantitative real-time PCR demonstrated strong expression of P2X1 and P2X5 receptor subunits and some expression of P2X2 subunit mRNAs. The main properties of the ATP-induced response in cortical astrocytes (high sensitivity to ATP, biphasic kinetics, and sensitivity to PPADS) were very similar to those reported for P2X1/5 heteromeric receptors studied previously in heterologous expression systems.
The Journal of Neuroscience | 2011
Julia Patzig; Olaf Jahn; Stefan Tenzer; Sven P. Wichert; Patricia de Monasterio-Schrader; Susanne Rosfa; Jörg Kuharev; Kuo Yan; Ingo Bormuth; Juliane Bremer; Adriano Aguzzi; Foteini Orfaniotou; Dörte Hesse; Markus H. Schwab; Wiebke Möbius; Klaus-Armin Nave; Hauke B. Werner
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia–axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.
Biological Psychiatry | 2010
Magdalena M. Brzózka; Konstantin Radyushkin; Sven P. Wichert; Hannelore Ehrenreich; Moritz J. Rossner
BACKGROUND The combined analysis of several large genome-wide association studies identified the basic helix-loop-helix (bHLH) transcription factor TCF4 as one of the most significant schizophrenia susceptibility genes. Its function in the adult brain, however, is not known. TCF4 belongs to the E-protein subfamily known to be involved in neurodevelopment. The messenger RNA expression of Tcf4 is sustained in the adult mouse brain, suggesting a function in the adult nervous system. Tcf4 null mutant mice die perinatally, and haploinsufficiency of TCF4 in humans causes severe mental retardation. METHODS To investigate the possible function of TCF4 in the adult central nervous system, we generated transgenic mice that moderately overexpress TCF4 postnatally in the brain to reduce the risk of developmental effects possibly interfering with adult brain functions. Tcf4 transgenic mice were characterized with molecular, histological, and behavioral methods. RESULTS Tcf4 transgenic mice display profound deficits in contextual and cued fear conditioning and sensorimotor gating. Furthermore, we show that TCF4 interacts with the neurogenic bHLH factors NEUROD and NDRF in vivo. Molecular analyses revealed the dynamic circadian deregulation of neuronal bHLH factors in the adult hippocampus. CONCLUSIONS We conclude that TCF4 likely acts in concert with other neuronal bHLH transcription factors contributing to higher-order cognitive processing. Moderate transcriptional deregulation of Tcf4 in the brain interferes with cognitive functions and might alter circadian processes in mice. These observations provide insight for the first time into the physiological function of TCF4 in the adult brain and its possible contributions to neuropsychiatric disease conditions.
The Journal of Neuroscience | 2006
Moritz J. Rossner; Johannes Hirrlinger; Sven P. Wichert; Christine Boehm; Dieter Newrzella; Holger Hiemisch; Gisela Eisenhardt; Carolin Stuenkel; Klaus-Armin Nave
The enormous cellular complexity of the brain is a major obstacle for gene expression profiling of neurological disease models, because physiologically relevant changes of transcription in a specific neuronal subset are likely to be lost in the presence of other neurons and glia. We solved this problem in transgenic mice by labeling genetically defined cells with a nuclear variant of GFP. When combined with laser-directed microdissection, intact RNA from unfixed, freeze-dried sections can be isolated, which is a prerequisite for high-quality global transcriptome analysis. Here, we compared gene expression profiles between pyramidal motor neurons and pyramidal somatosensory neurons captured from layer V of the adult neocortex. One striking feature of motor neurons is the elevated expression of ribosomal genes and genes involved in ATP synthesis. This suggests a molecular adaptation of the upper motor neurons to longer axonal projections and higher electrical activity. These molecular signatures were not detected when cortical layers and microareas were analyzed in toto. Additionally, we used microarrays to determine the global mRNA expression profiles of microdissected Purkinje cells and cellularly complex cerebellar cortex microregions. In summary, our analysis shows that cellularly complex targets lead to averaged gene expression profiles that lack substantial amounts of cell type-specific information. Thus, cell type-restricted sampling strategies are mandatory in the CNS. The combined use of a genetic label with laser-microdissection offers an unbiased approach to map patterns of gene expression onto practically any cell type of the brain.
Science Signaling | 2012
Ben Brankatschk; Sven P. Wichert; Shem Johnson; Olivier Schaad; Moritz J. Rossner; Jean Gruenberg
The transcriptional response to EGFR activation is rapidly initiated after receptor stimulation before degradative sorting occurs. Surface Action Ligand binding to the epidermal growth factor receptor (EGFR) triggers the endocytosis (internalization) of the receptor, which can be degraded or recycled back to the cell surface. Because EGF remains bound, internalized EGFR could continue to signal. Brankatschk et al. investigated how the transcriptional response to EGF was affected by ubiquitination (a posttranslational modification of the EGFR that is required for its endocytic sorting) and endocytosis of cell surface EGFR and by intracellular sorting of internalized EGFR. Whereas interfering with factors that mediate sorting steps of internalized EGFR did not substantially alter the intensity or profile of the EGF-induced transcriptional response, blocking the ubiquitination or endocytosis of the EGFR increased the transcriptional response. The authors suggest that the transcriptional response to activation of the EGFR is rapidly put into motion after receptors at the cell surface are stimulated and before degradative sorting takes place. Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal–regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.
Cellular and Molecular Life Sciences | 2012
Patricia de Monasterio-Schrader; Olaf Jahn; Stefan Tenzer; Sven P. Wichert; Julia Patzig; Hauke B. Werner
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of ‘omics’ approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the >1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause—when mutated in humans—hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia–axonal interactions, leukodystrophies, and demyelinating diseases.
Brain Structure & Function | 2015
Christian Schnell; Ali Shahmoradi; Sven P. Wichert; Steffen Mayerl; Yohannes Hagos; Heike Heuer; Moritz J. Rossner; Swen Hülsmann
Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.
The EMBO Journal | 2014
Christoph Biesemann; Mads Grønborg; Elisa Luquet; Sven P. Wichert; Véronique Bernard; Simon R. Bungers; Ben Cooper; Frederique Varoqueaux; Liyi Li; Jennifer A. Byrne; Henning Urlaub; Olaf Jahn; Nils Brose; Etienne Herzog
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non‐synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high‐resolution biochemical analyses of specific synapse subpopulations. Employing knock‐in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high‐resolution biochemical analyses of specific synapse subpopulations in health and disease.
The Journal of Neuroscience | 2013
Ingo Bormuth; Kuo Yan; Tomoko Yonemasu; Maike N. Gummert; Mingyue Zhang; Sven P. Wichert; Olga Grishina; Alexander Pieper; Weiqi Zhang; Sandra Goebbels; Victor Tarabykin; Klaus-Armin Nave; Markus H. Schwab
Establishment of long-range fiber tracts by neocortical projection neurons is fundamental for higher brain functions. The molecular control of axon tract formation, however, is still poorly understood. Here, we have identified basic helix–loop–helix (bHLH) transcription factors Neurod2 and Neurod6 as key regulators of fasciculation and targeted axogenesis in the mouse neocortex. In Neurod2/6 double-mutant mice, callosal axons lack expression of the cell adhesion molecule Contactin2, defasciculate in the subventricular zone, and fail to grow toward the midline without forming Probst bundles. Instead, mutant axons overexpress Robo1 and follow random trajectories into the ipsilateral cortex. In contrast to long-range axogenesis, generation and maintenance of pyramidal neurons and initial axon outgrowth are grossly normal, suggesting that these processes are under distinct transcriptional control. Our findings define a new stage in corpus callosum development and demonstrate that neocortical projection neurons require transcriptional specification by neuronal bHLH proteins to execute an intrinsic program of remote connectivity.