Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Ramelow is active.

Publication


Featured researches published by Sven Ramelow.


Science | 2012

Quantum Entanglement of High Angular Momenta

Robert Fickler; Radek Lapkiewicz; William N. Plick; Mario Krenn; Christoph Schaeff; Sven Ramelow; Anton Zeilinger

Twist and Entangle Entanglement is a key feature in quantum information science and plays an important role in various applications of quantum mechanics. Fickler et al. (p. 640) present a method for converting the polarization state of photons into information encoded into spatial modes of a single photon. From this, superposition states and entangled photons with very high orbital angular momentum quantum numbers were generated. A method to entangle photons with very-high–orbital angular momentum quantum numbers advances quantum information science. Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.


Nature | 2013

Bell violation using entangled photons without the fair-sampling assumption

Marissa Giustina; Alexandra Mech; Sven Ramelow; Bernhard Wittmann; Johannes Kofler; J. Beyer; Adriana E. Lita; Brice Calkins; Thomas Gerrits; Sae Woo Nam; Rupert Ursin; Anton Zeilinger

The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint—namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble. To do this, we use the Eberhard form of Bell’s inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms. Technical improvements of the photon source and high-efficiency transition-edge sensors were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.


New Journal of Physics | 2012

Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering

Bernhard Wittmann; Sven Ramelow; Fabian Steinlechner; Nathan K. Langford; Nicolas Brunner; Howard Mark Wiseman; Rupert Ursin; Anton Zeilinger

Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrodinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein–Podolsky–Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.

Mario Krenn; Marcus Huber; Robert Fickler; Radek Lapkiewicz; Sven Ramelow; Anton Zeilinger

Significance Quantum entanglement is one of the key features of quantum mechanics. Quantum systems are the basis of new paradigms in quantum computation, quantum cryptography, or quantum teleportation. By increasing the size of the entangled quantum system, a wider variety of fundamental tests as well as more realistic applications can be performed. The size of the entangled quantum state can increase with the number of particles or, as in the present paper, with the number of involved dimensions. We explore a quantum system that consists of two photons which are 100-dimensionally entangled. The dimensions investigated are the different spatial modes of photons. The result may have potential applications in quantum cryptography and other quantum information tasks. Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.


Nature | 2014

Quantum imaging with undetected photons

Gabriela Barreto Lemos; Victoria Borish; Garrett D. Cole; Sven Ramelow; Radek Lapkiewicz; Anton Zeilinger

Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information—knowledge can be extracted by, and about, a photon that is never detected.


Nature | 2011

Experimental non-classicality of an indivisible quantum system

Radek Lapkiewicz; Peizhe Li; Christoph Schaeff; Nathan K. Langford; Sven Ramelow; Marcin Wieśniak; Anton Zeilinger

In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored—notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements—and, therefore, no non-contextual theory—can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.


european quantum electronics conference | 2009

Discrete, tunable color-entanglement

Sven Ramelow; L. Ratschbache; Alessandro Fedrizzi; Nathan K. Langford; Anton Zeilinger

Color, or frequency, is one of the most familiar degrees of freedom (DOFs) of light and has been routinely analyzed in spectroscopy for centuries. However, it has been used relatively little for quantum technologies. Entangled qubits are a key ingredient in many such technologies. For other optical degrees of freedom discretely entangled states have been extensively investigated, e.g. [1–5]. In contrast, discrete frequency entanglement has not yet been unambiguously demonstrated, despite potentially interesting applications such as enhanced clock synchronization beyond the classical limit [6,7] and improved quantum communication in noisy channels [8]. Moreover, quantum information encoded in discrete, tunable frequency bins of photons would be an ideal mediator between stationary qubits with different energy levels. For many of those applications it is essential, that the color-entangled stated can be directly created - in contrast to spectrally post-selecting them from broadband continuous spectral entanglement [9,10]. So far, no experiment was able to achieve this.


Nature | 2010

Direct generation of photon triplets using cascaded photon-pair sources

Hannes Hübel; Deny R. Hamel; Alessandro Fedrizzi; Sven Ramelow; Kevin J. Resch; Thomas Jennewein

Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. Our photon-triplet source will allow experimental interrogation of novel quantum correlations, the generation of tripartite entanglement without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.


Scientific Reports | 2013

Real-Time Imaging of Quantum Entanglement

Robert Fickler; Mario Krenn; Radek Lapkiewicz; Sven Ramelow; Anton Zeilinger

Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.


New Journal of Physics | 2009

Feasibility of 300 km quantum key distribution with entangled states

Thomas Scheidl; Rupert Ursin; Alessandro Fedrizzi; Sven Ramelow; Xiao-song Ma; Thomas Herbst; Robert Prevedel; Lothar Ratschbacher; Johannes Kofler; Thomas Jennewein; Anton Zeilinger

A significant limitation of practical quantum key distribution (QKD) setups is currently their limited operational range. It has recently been emphasized (Ma et al 2007 Phys. Rev. A 76 012307) that entanglement- based QKD systems can tolerate higher channel losses than systems based on weak coherent laser pulses (WCP), in particular, when the source is located symmetrically between the two communicating parties, Alice and Bob. In the work presented here, we experimentally study this important advantage by implementing different entanglement-based QKD setups on a 144km free-space link between the two Canary Islands of La Palma and Tenerife. We established three different configurations where the entangled photon source was placed at Alices location, asymmetrically between Alice and Bob and symmetrically in the middle between Alice and Bob, respectively. The resulting quantum channel attenuations of 35, 58 and 71dB, respectively, significantly exceed the limit for WCP systems (Ma et al 2007 Phys. Rev. A 76 012307). This confirms that QKD over distances of 300km and even more is feasible with entangled state sources placed in the middle between Alice and Bob.

Collaboration


Dive into the Sven Ramelow's collaboration.

Top Co-Authors

Avatar

Anton Zeilinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William N. Plick

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Rupert Ursin

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge