Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Rottenberg is active.

Publication


Featured researches published by Sven Rottenberg.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs

Sven Rottenberg; Janneke E. Jaspers; Ariena Kersbergen; Eline van der Burg; Anders O.H. Nygren; Serge A.L. Zander; Patrick W. B. Derksen; Michiel de Bruin; John Zevenhoven; Alan Lau; Robert Boulter; Aaron Cranston; Mark J. O'Connor; Niall Morrison Barr Martin; Piet Borst; Jos Jonkers

Whereas target-specific drugs are available for treating ERBB2-overexpressing and hormone receptor-positive breast cancers, no tailored therapy exists for hormone receptor- and ERBB2-negative (“triple-negative”) mammary carcinomas. Triple-negative tumors account for 15% of all breast cancers and frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. The DNA-repair defects characteristic of BRCA1-deficient cells confer sensitivity to poly(ADP-ribose) polymerase 1 (PARP1) inhibition, which could be relevant to treatment of triple-negative tumors. To evaluate PARP1 inhibition in a realistic in vivo setting, we tested the PARP inhibitor AZD2281 in a genetically engineered mouse model (GEMM) for BRCA1-associated breast cancer. Treatment of tumor-bearing mice with AZD2281 inhibited tumor growth without signs of toxicity, resulting in strongly increased survival. Long-term treatment with AZD2281 in this model did result in the development of drug resistance, caused by up-regulation of Abcb1a/b genes encoding P-glycoprotein efflux pumps. This resistance to AZD2281 could be reversed by coadministration of the P-glycoprotein inhibitor tariquidar. Combination of AZD2281 with cisplatin or carboplatin increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents. Our results demonstrate in vivo efficacy of AZD2281 against BRCA1-deficient breast cancer and illustrate how GEMMs of cancer can be used for preclinical evaluation of novel therapeutics and for testing ways to overcome or circumvent therapy resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer

Sven Rottenberg; Anders O.H. Nygren; Marina Pajic; Fijs W. B. van Leeuwen; Ingrid van der Heijden; Koen van de Wetering; Xiaoling Liu; Karin E. de Visser; K. Gilhuijs; Olaf van Tellingen; Jan P. Schouten; Jos Jonkers; Piet Borst

We have studied in vivo responses of “spontaneous” Brca1- and p53-deficient mammary tumors arising in conditional mouse mutants to treatment with doxorubicin, docetaxel, or cisplatin. Like human tumors, the response of individual mouse tumors varies, but eventually they all become resistant to the maximum tolerable dose of doxorubicin or docetaxel. The tumors also respond well to cisplatin but do not become resistant, even after multiple treatments in which tumors appear to regrow from a small fraction of surviving cells. Classical biochemical resistance mechanisms, such as up-regulated drug transporters, appear to be responsible for doxorubicin resistance, rather than alterations in drug-damage effector pathways. Our results underline the promise of these mouse tumors for the study of tumor-initiating cells and of drug therapy of human cancer.


Nature | 2015

REV7 counteracts DNA double-strand break resection and affects PARP inhibition

Guotai Xu; J. Ross Chapman; Inger Brandsma; Jingsong Yuan; Martin Mistrik; Peter Bouwman; Jirina Bartkova; Ewa Gogola; Daniël O. Warmerdam; Marco Barazas; Janneke E. Jaspers; Kenji Watanabe; Mark Pieterse; Ariena Kersbergen; Wendy Sol; Patrick H. N. Celie; Philip C. Schouten; Bram van den Broek; Ahmed M. Salman; Marja Nieuwland; Iris de Rink; Jorma J. de Ronde; Kees Jalink; Simon J. Boulton; Junjie Chen; Dik C. van Gent; Jiri Bartek; Jos Jonkers; Piet Borst; Sven Rottenberg

Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX–MDC1–RNF8–RNF168–53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.


Cell Cycle | 2008

How do real tumors become resistant to cisplatin

Piet Borst; Sven Rottenberg; Jos Jonkers

Lab research on cultured tumor cells selected for resistance to platinum compounds has turned up a diverse array of resistance mechanisms. In contrast, we recently found that mouse mammary tumors containing irrepairable null alleles of the Brca1 gene do not become resistant to cisplatin ever, although they invariably become resistant to a variety of other anti-cancer drugs. Each new treatment with cisplatin shrinks the tumor to a very small remnant, but relapse always occurs. The BRCA1 missing in these mouse tumors is essential for the homology-directed DNA repair (HR) that allows error-free repair of the duplex breaks caused by the excision of platin-DNA adducts. The mouse tumor results therefore raise the question whether the cisplatin resistance mechanisms identified in vitro can actually overcome an irreversible defect in DNA repair in real tumors. This question is underlined by recent analyses of tumor samples of patients with ovarian cancer that have uncovered a new platin resistance mechanism: these tumors were initially sensitive to platin through a defect in the BRCA2 gene, also required for HR, like BRCA1. Resistance in these patients, - after an initial response of the tumor -, was due to secondary mutations in the defective BRCA2 gene, restoring BRCA2 function.1,2 These clinical observations show the overriding importance of a functional HR system for tumor cells to survive platin-induced DNA lesions. Taken together with the mouse mammary tumor data, these observations raise the possibility that proliferating cells have no readily available mechanism to escape from cisplatin DNA damage once their HR is irreversibly inactivated.


International Journal for Parasitology | 2001

Inhibition of apoptosis by intracellular protozoan parasites.

Volker Heussler; Peter Küenzi; Sven Rottenberg

Protozoan parasites which reside inside a host cell avoid direct destruction by the immune system of the host. The infected cell, however, still has the capacity to counteract the invasive pathogen by initiating its own death, a process which is called programmed cell death or apoptosis. Apoptotic cells are recognised and phagocytosed by macrophages and the parasite is potentially eliminated together with the infected cell. This potent defence mechanism of the host cell puts strong selective pressure on the parasites which have, in turn, evolved strategies to modulate the apoptotic program of the host cell to their favour. Within the last decade, the existence of cellular signalling pathways which inhibit the apoptotic machinery has been demonstrated. It is not surprising that intracellular pathogens subvert these pathways to ensure their own survival in the infected cell. Molecular mechanisms which interfere with apoptotic pathways have been studied extensively for viruses and parasitic bacteria, but protozoan parasites have come into focus only recently. Intracellular protozoan parasites which have been reported to inhibit the apoptotic program of the host cell, are Toxoplasma gondii, Trypanosoma cruzi, Leishmania sp., Theileria sp., Cryptosporidium parvum, and the microsporidian Nosema algerae. Although these parasites differ in their mechanism of host cell entry and in their final intracellular localisation, they might activate similar pathways in their host cells to inhibit apoptosis. In this respect, two families of molecules, which are known for their capacity to interrupt the apoptotic program, are currently discussed in the literature. First, the expression of heat shock proteins is often induced upon parasite infection and can directly interfere with molecules of the cellular death machinery. Secondly, a more indirect effect is attributed to the parasite-dependent activation of NF-kappaB, a transcription factor that regulates the transcription of anti-apoptotic molecules.


Nature | 2016

Replication fork stability confers chemoresistance in BRCA-deficient cells

Arnab Ray Chaudhuri; Elsa Callen; Xia Ding; Ewa Gogola; Alexandra A. Duarte; Ji-Eun Lee; Nancy Wong; Vanessa Lafarga; Jennifer A. Calvo; Nicholas J. Panzarino; Sam John; Amanda Day; Anna Vidal Crespo; Binghui Shen; Linda M. Starnes; Julian R. de Ruiter; Jeremy A. Daniel; Panagiotis A. Konstantinopoulos; David Cortez; Sharon B. Cantor; Oscar Fernandez-Capetillo; Kai Ge; Jos Jonkers; Sven Rottenberg; Shyam K. Sharan; André Nussenzweig

Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.


Nature Communications | 2013

Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin

Baoxu Pang; Xiaohang Qiao; Lennert Janssen; Arno Velds; Tom A. Groothuis; Ron M. Kerkhoven; Marja Nieuwland; Huib Ovaa; Sven Rottenberg; Olaf van Tellingen; Jeroen J.W.M. Janssen; Peter C. Huijgens; Wilbert Zwart; Jacques Neefjes

DNA topoisomerase II inhibitors are a major class of cancer chemotherapeutics, which are thought to eliminate cancer cells by inducing DNA double-strand breaks. Here we identify a novel activity for the anthracycline class of DNA topoisomerase II inhibitors: histone eviction from open chromosomal areas. We show that anthracyclines promote histone eviction irrespective of their ability to induce DNA double-strand breaks. The histone variant H2AX, which is a key component of the DNA damage response, is also evicted by anthracyclines, and H2AX eviction is associated with attenuated DNA repair. Histone eviction deregulates the transcriptome in cancer cells and organs such as the heart, and can drive apoptosis of topoisomerase-negative acute myeloid leukaemia blasts in patients. We define a novel mechanism of action of anthracycline anticancer drugs doxorubicin and daunorubicin on chromatin biology, with important consequences for DNA damage responses, epigenetics, transcription, side effects and cancer therapy.


Cell Cycle | 2007

What Makes Tumors Multidrug Resistant

Piet Borst; Jos Jonkers; Sven Rottenberg

Tumors arising “spontaneously” in genetically modified mice now make it possible to study mechanisms of drug resistance in animal tumors resembling their human counterparts. We have studied mouse mammary tumors induced by conditional deletion of Brca1 and p53. These tumors respond to monotherapy with the maximal tolerable dose of doxorubicin, or docetaxel, but eventually always become resistant to the drugs. Resistance in most tumors is caused by upregulation of drug transporters and not by interference with apoptosis/senescence. The tumors also respond to cisplatin, but do not become resistant, even after repeated treatments at the maximum tolerable dose. We conclude that resistance due to interference with cell death effector pathways (apoptosis/senescence) is not an option in these tumors, re-emphasizing doubts that such mechanisms play a role in epithelial tumors. Tumors responding to drug may shrink to less than 5% of their volume before relapsing. We argue that this resistant remnant fraction may provide a test for the tumor stem cell hypothesis and, more generally, that “spontaneous” mouse tumors resembling their human counterparts provide a useful new tool for drug development and for improving treatment regimens.


Cancer Research | 2010

6-Thioguanine Selectively Kills BRCA2-Defective Tumors and Overcomes PARP Inhibitor Resistance

Natalia Issaeva; Huw D. Thomas; Tatjana Djurenovic; Janneke E. Jaspers; Ivaylo Stoimenov; Suzanne Kyle; Nicholas Pedley; Ponnari Gottipati; Rafal Zur; Kate Sleeth; Vicky Chatzakos; Evan A. Mulligan; Cecilia Lundin; Evgenia Gubanova; Ariena Kersbergen; Adrian L. Harris; Ricky A. Sharma; Sven Rottenberg; Nicola J. Curtin; Thomas Helleday

Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand breaks (DSB) that are repaired by HR. Furthermore, we show that 6TG is as efficient as a PARP inhibitor in selectively killing BRCA2-defective tumors in a xenograft model. Spontaneous BRCA1-defective mammary tumors gain resistance to PARP inhibitors through increased P-glycoprotein expression. Here, we show that 6TG efficiently kills such BRCA1-defective PARP inhibitor-resistant tumors. We also show that 6TG could kill cells and tumors that have gained resistance to PARP inhibitors or cisplatin through genetic reversion of the BRCA2 gene. Although HR is reactivated in PARP inhibitor-resistant BRCA2-defective cells, it is not fully restored for the repair of 6TG-induced lesions. This is likely to be due to several recombinogenic lesions being formed after 6TG. We show that BRCA2 is also required for survival from mismatch repair-independent lesions formed by 6TG, which do not include DSBs. This suggests that HR is involved in the repair of 6TG-induced DSBs as well as mismatch repair-independent 6TG-induced DNA lesion. Altogether, our data show that 6TG efficiently kills BRCA2-defective tumors and suggest that 6TG may be effective in the treatment of advanced tumors that have developed resistance to PARP inhibitors or platinum-based chemotherapy.


The EMBO Journal | 2015

Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt‐based anti‐cancer drugs

Rosa Planells-Cases; Darius Lutter; Charlotte Guyader; Nora Merete Gerhards; Florian Ullrich; Deborah A Elger; Aslı Küçükosmanoğlu; Guotai Xu; Felizia K. Voss; S. Momsen Reincke; Tobias Stauber; Vincent A. Blomen; Daniel J. Vis; Lodewyk F. A. Wessels; Thijn R. Brummelkamp; Piet Borst; Sven Rottenberg; Thomas J. Jentsch

Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.

Collaboration


Dive into the Sven Rottenberg's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Piet Borst

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ariena Kersbergen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ewa Gogola

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Janneke E. Jaspers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marco Barazas

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexandra A. Duarte

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Charlotte Guyader

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Guotai Xu

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge