Sven Wießner
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Wießner.
ACS Applied Materials & Interfaces | 2015
Amit Kumar Das; Aladdin Sallat; Frank Böhme; Marcus Suckow; Debdipta Basu; Sven Wießner; Klaus Werner Stöckelhuber; Brigitte Voit; Gert Heinrich
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
ACS Applied Materials & Interfaces | 2017
Tamil Selvan Natarajan; Subramani Bhagavatheswaran Eshwaran; Klaus Werner Stöckelhuber; Sven Wießner; Petra Pötschke; Gert Heinrich; Amit Kumar Das
A detail study concerning the strain (tensile) dependent electrical conductivity of elastomeric composites is reported in this present paper. Multiwall carbon nanotubes (CNT), conducting carbon black (CB), and their combinations were considered as conducting filler in cross-linked natural rubber matrix. The loadings of the fillers were considered from 3 to 11 phr (filler concentration close to their percolation threshold). Without hindering the elastic nature of the composite (reversible stretchability up to several 100%), the change of relative resistance, ΔR/R0 (ΔR is the change in the resistance with respect to strain and R0 is the initial resistance of the sample) of the CB filled composites was found to be as much as ∼1300 at around 120% elongation. This value is much higher than any other reported values obtained from conducting polymeric composites. It was found that CNT offered a strong strain dependent character in the regime 100% to 150% elongation, whereas, the carbon black filled natural rubber showed strong strain dependencies at 50% to 100% elongation strain. The combination of two different fillers could be exploited to tailor and manipulate the sensing operating regime from 50% to 150% strain depending on the ratios of the two filler system. Additionally, after several loading-unloading cycles, the conductivity of the sample was very stable for CB filled system but for CNT filled system the conductivity of the sample was altered. This type of elastic materials could be used in structural health monitoring, sensors in different dynamic elastomeric parts like tires, valves, gaskets, engine mounts, etc.
Rubber Chemistry and Technology | 2017
Sankar Raman Vaikuntam; Eshwaran Subramani Bhagavatheswaran; Klaus Werner Stöckelhuber; Sven Wießner; Gert Heinrich; Amit Kumar Das
ABSTRACT The solution SBR and silica-based composites are prepared by hydrolysis of tetraethylorthosilicate in the presence of an organic solution of SBR and n-butylamine as catalyst. Further addition of bis[3-(triethoxysilyl)propyl]tetrasulfide, a silane coupling agent, improves the performance and properties of the composites. All the results are compared with commercial precipitated silica at similar loading conditions. The generated silica particles from this alkoxide route resulted in lower Mooney viscosity of the compound and showed less filler flocculation compared with standard commercial precipitated silica in reference compounds. A detailed dynamic mechanical study also indicated that alkoxide silica in model tire compounds could offer a lower rolling resistance and a higher wet skid resistance compared to the reference. Other properties such as heat build-up, rebound resilience, and hysteresis loss were found to be very promising for alkoxide silica composites, too. The silica particles (aggreg...
ACS Omega | 2017
Tamil Selvan Natarajan; Klaus Werner Stöckelhuber; Mikhail Malanin; Klaus-Jochen Eichhorn; Petr Formanek; Uta Reuter; Sven Wießner; Gert Heinrich; Amit Das
This is the first study on the impact of ice crystals on glass transition and mechanical behavior of soft cross-linked elastomers. A hydrophilic elastomer such as epichlorohydrin–ethylene oxide–allyl glycidyl ether can absorb about ∼40 wt % of water. The water-swollen cross-linked network exhibits elastic properties with more than 1500% stretchability at room temperature. Coincidently, the phase transition of water into solid ice crystals inside of the composites allows the reinforcement of the soft elastomer mechanically at lower temperatures. Young’s modulus of the composites measured at −20 °C remarkably increased from 1.45 to 3.14 MPa, whereas at +20 °C, the effect was opposite and the Young’s modulus decreased from 0.6 to 0.03 MPa after 20 days of water treatment. It was found that a part of the absorbed water, ∼74% of the total absorbed water, is freezable and occupies nearly 26 vol % of the composites. Simultaneously, these solid ice crystals are found to be acting as a reinforcing filler at lower temperatures. The size of these ice crystals is distributed in a relatively narrow range of 400–600 nm. The storage modulus (E′) of the ice crystal-filled composites increased from 3 to 13 MPa at −20 °C. The glass transition temperature (−37 °C) of the soft cross-linked elastomer was not altered by the absorption of water. However, a special transition (melting of ice) occurred at temperatures close to 0 °C as observed in the dynamic mechanical analysis of the water-swollen elastomers. The direct polymer/filler (ice crystals) interaction was demonstrated by strain sweep experiments and investigated using Fourier transform infrared spectroscopy. This type of cross-linked rubber could be integrated into a smart rubber application such as in adaptable mechanics, where the stiffness of the rubber can be altered as a function of temperature without affecting the mechanical stretchability either below or above 0 °C (above the glass temperature region) of the rubber.
Textile Research Journal | 2018
Chokri Cherif; Rico Hickmann; Andreas Nocke; Matthias Schäfer; Klaus Röbenack; Sven Wießner; Gerald Gerlach
The integration of shape memory alloys (SMAs) into textile-reinforced composites produces a class of smart materials whose shape can be actively influenced. In this paper, Ni-Ti SMA wires are inserted during the weaving of a glass fiber reinforcement textile. This “active” reinforcement is then combined with an elastomeric matrix to produce a highly flexible composite sheet, which maintains high rigidity in the longitudinal direction. By activating the SMAs, high deflection ratios of up to 35% (relative to the components length) are achieved. To adjust the composites deflection to defined values, a closed-loop control is set up to adjust the current flow through the SMA wires. A control algorithm is designed and evaluated for several test cases. The high deformability and the controllable behavior show the high potential of these materials for applications such as aerodynamic flow control, automation and architecture.
ACS Applied Materials & Interfaces | 2018
Tamil Selvan Natarajan; Shigeru Okamoto; Klaus Werner Stöckelhuber; Sven Wießner; Uta Reuter; Dieter Fischer; Anik Kumar Ghosh; Gert Heinrich; Amit Das
A mechanically adaptable elastomer composite is prepared with reversible soft-stiff properties that can be easily controlled. By the exploitation of different morphological structures of calcium sulfate, which acts as the active filler in a soft elastomer matrix, the magnitude of filler reinforcement can be reversibly altered, which will be reflected in changes of the final stiffness of the material. The higher stiffness, in other words, the higher modulus of the composites, is realized by the in situ development of fine nanostructured calcium sulfate dihydrate crystals, which are formed during exposure to water and, further, these highly reinforcing crystals can be transformed to a nonreinforcing hemihydrate mesocrystalline structure by simply heating the system in a controlled way. The Youngs modulus of the developed material can be reversibly altered from ∼6 to ∼17 MPa, and the dynamic stiffness (storage modulus at room temperature and 10 Hz frequency) alters its value in the order of 1000%. As the transformation is related to the presence of water molecules in the crystallites, a hydrophilic elastomer matrix was selected, which is a blend of two hydrophilic polymers, namely, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer and a terpolymer of ethylene oxide-propylene oxide-allyl glycidyl ether. For the first time, this method also provides a route to regulate the morphology and structure of calcium sulfate nanocrystals in a confined ambient of cross-linked polymer chains.
Journal of Elastomers and Plastics | 2017
Aleksandra Ivanoska-Dacikj; Gordana Bogoeva-Gaceva; René Jurk; Sven Wießner; Gert Heinrich
This work, conceived as a second step in the development of high-performance damping materials suitable for seismic application, describes the preparation and characterization of complex natural rubber-based composites containing hybrid nano- and conventional fillers. The cluster–cluster aggregation model was used to assess the apparent filler networking energy. The values obtained suggested that the presence of the hybrid nanofiller strengthens the filler networking. The same model was used to understand the mechanisms of energy dissipation. The damping coefficient was found to be in the sought range between 10% and 20% (at 0.5 Hz and high shear strain).
Archive | 2016
Debdipta Basu; Amit Das; Klaus Werner Stöckelhuber; Sven Wießner
Driven by the desire to find an alternative way of vulcanizing elastomers without sulfur, researchers have widely explored ionic crosslinking techniques. The opportunity was taken to play with the functionality of the host polymer and its modification process to develop nanostructured ionic elastomers. Neutralization of polar elastomers by various divalent metal cations has been the route most employed for fabrication of this class of material. Ionic association or aggregation on the molecular level results in microphase separation of certain regions and, hence, enables easier processing. Thermally labile ionic domains introduced into the network make the entire material thermoresponsive and, therefore, it is possible to obtain reversible transition of dynamic mechanical properties. The unique network structure of these materials has led to outstanding physical properties that have not been achieved so far for conventional sulfidic networks. Consequently, many multifunctional and smart materials have been envisaged and designed using these systems. A detailed overview is provided on the various nanostructured ionic elastomers developed over the years. It would not be exaggerating to mention in the context of the discussion that nanostructured ionic elastomers will definitely open up new horizons in materials research.
Composites Science and Technology | 2015
Sandip Rooj; Amit Das; Klaus-Werner Stöckelhuber; Sven Wießner; Dieter Fischer; U. Reuter; Gert Heinrich
European Polymer Journal | 2016
H.H. Le; Sven Wießner; Amit Das; D. Fischer; M. auf der Landwehr; Q.K. Do; Klaus-Werner Stöckelhuber; Gert Heinrich; Hans-Joachim Radusch