Sven Zels
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Zels.
Frontiers in Endocrinology | 2012
Jelle Caers; Heleen Verlinden; Sven Zels; Hans Peter Vandersmissen; Kristel Vuerinckx; Liliane Schoofs
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insects life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
PLOS ONE | 2013
Senne Dillen; Sven Zels; Heleen Verlinden; Jornt Spit; Pieter Van Wielendaele; Jozef Vanden Broeck
Whereas short neuropeptide F (sNPF) has already been reported to stimulate feeding behaviour in a variety of insect species, the opposite effect was observed in the desert locust. In the present study, we cloned a G protein-coupled receptor (GPCR) cDNA from the desert locust, Schistocerca gregaria. Cell-based functional analysis of this receptor indicated that it is activated by both known isoforms of Schgr-sNPF in a concentration dependent manner, with EC50 values in the nanomolar range. This Schgr-sNPF receptor constitutes the first functionally characterized peptide GPCR in locusts. The in vivo effects of the sNPF signalling pathway on the regulation of feeding in locusts were further studied by knocking down the newly identified Schgr-sNPF receptor by means of RNA interference, as well as by means of peptide injection studies. While injection of sNPF caused an inhibitory effect on food uptake in the desert locust, knocking down the corresponding peptide receptor resulted in an increase of total food uptake when compared to control animals. This is the first comprehensive study in which a clearly negative correlation is described between the sNPF signalling pathway and feeding, prompting a reconsideration of the diverse roles of sNPFs in the physiology of insects.
Peptides | 2014
Senne Dillen; Rik Verdonck; Sven Zels; Pieter Van Wielendaele; Jozef Vanden Broeck
Peptides of the short neuropeptide F (sNPF) family have been shown to modulate feeding behavior in a wide variety of insect species. While these peptides stimulate feeding and food-searching behavior in Drosophila melanogaster and Apis mellifera, an opposite effect has recently been demonstrated in the desert locust, Schistocerca gregaria. In this study, we elaborate on these observations with the identification of the nucleotide sequence encoding the Schgr-sNPF precursor and the study of its role in the regulation of locust feeding behavior. We confirm that both Schgr-sNPF-like peptides, previously identified in mass spectrometric studies, are genuine precursor-encoded peptides. RNA interference mediated silencing of the Schgr-sNPF precursor transcript generates novel evidence for an inhibitory role of Schgr-sNPF in the regulation of feeding in S. gregaria. Furthermore, we show that starvation reduces the Schgr-sNPF precursor transcript level in the optic lobes, the primary visual centers of the locust brain. Our data indicate that Schgr-sNPF exerts an inhibitory effect on food uptake in the desert locust, which contrasts with effects of sNPF reported for several other insect species.
Insect Biochemistry and Molecular Biology | 2014
Jornt Spit; Sven Zels; Senne Dillen; Michiel Holtof; Niels Wynant; Jozef Vanden Broeck
While technological advancements have recently led to a steep increase in genomic and transcriptomic data, and large numbers of protease sequences are being discovered in diverse insect species, little information is available about the expression of digestive enzymes in Orthoptera. Here we describe the identification of Locusta migratoria serine protease transcripts (cDNAs) involved in digestion, which might serve as possible targets for pest control management. A total of 5 putative trypsin and 15 putative chymotrypsin gene sequences were characterized. Phylogenetic analysis revealed that these are distributed among 3 evolutionary conserved clusters. In addition, we have determined the relative gene expression levels of representative members in the gut under different feeding conditions. This study demonstrated that the transcript levels for all measured serine proteases were strongly reduced after starvation. On the other hand, larvae of L. migratoria displayed compensatory effects to the presence of Soybean Bowman Birk (SBBI) and Soybean Trypsin (SBTI) inhibitors in their diet by differential upregulation of multiple proteases. A rapid initial upregulation was observed for all tested serine protease transcripts, while only for members belonging to class I, the transcript levels remained elevated after prolonged exposure. In full agreement with these results, we also observed an increase in proteolytic activity in midgut secretions of locusts that were accustomed to the presence of protease inhibitors in their diet, while no change in sensitivity to these inhibitors was observed. Taken together, this paper is the first comprehensive study on dietary dependent transcript levels of proteolytic enzymes in Orthoptera. Our data suggest that compensatory response mechanisms to protease inhibitor ingestion may have appeared early in insect evolution.
Advances in Insect Physiology | 2014
Heleen Verlinden; Rut Vleugels; Sven Zels; Senne Dillen; Cynthia Lenaerts; Katleen Crabbé; Jornt Spit; Jozef Vanden Broeck
Abstract In metazoans, neuronal and endocrine communication is based on the release of extracellular signalling molecules that are recognised in a physiological concentration range by specific receptor proteins present in the target cells. These receptors will elicit a cellular response upon activation by their physiological agonist. A highly diverse repertoire of naturally occurring receptor agonists has already been discovered. Peptides, proteins and biogenic amines constitute the most diverse agonist classes. Most of these interact with G protein-coupled receptors (GPCRs), the largest category of signal transducing receptors that controls virtually every physiological process in metazoans. For more than two decades, insect GPCRs have been hailed for their potentially excellent aptitude to serve as pharmacological targets for the development of novel products for insect pest control. In this review, we will address this issue and enumerate reasons why it would be worth investing more in these targets.
Insect Biochemistry and Molecular Biology | 2014
Juan Huang; Elisabeth Marchal; Ekaterina F. Hult; Sven Zels; Jozef Vanden Broeck; Stephen S. Tobe
The FGLamide allatostatins (FGL/ASTs) are a family of neuropeptides with pleiotropic functions, including the inhibition of juvenile hormone (JH) biosynthesis, vitellogenesis and muscle contraction. In the cockroach, Diploptera punctata, thirteen FGLa/ASTs and one allatostatin receptor (AstR) have been identified. However, the mode of action of ASTs in regulation of JH biosynthesis remains unclear. Here, we determined the tissue distribution of Dippu-AstR. And we expressed Dippu-AstR in vertebrate cell lines, and activated the receptor with the Dippu-ASTs. Our results show that all thirteen ASTs activated Dippu-AstR in a dose dependent manner, albeit with different potencies. Functional analysis of AstR in multiple cell lines demonstrated that activation of the AstR receptor resulted in elevated levels of Ca(2+) and cAMP, which suggests that Dippu-AstR can act through the Gαq and Gαs protein pathways. The study on the target of AST action reveals that FGL/AST affects JH biosynthesis prior to the entry of acetyl-CoA into the JH biosynthetic pathway.
Peptides | 2016
Eddy-Tim Verjans; Sven Zels; Walter Luyten; Bart Landuyt; Liliane Schoofs
The human cathelicidin peptide LL-37 plays a crucial role in the immune system on many levels, from the first line of defense in epithelial cells to restoring the tissue after infection. On host cells, the majority of the LL-37-induced effects are mediated via the direct or indirect activation of several structurally unrelated cell surface receptors or intracellular targets. How LL-37 is able to affect multiple receptors is currently not well understood. So far, the mechanistic details underlying receptor activation are poorly investigated and evidence for a conventional ligand/receptor interaction is scarce. Over the past few decades, a large number of studies have reported on the activation of a receptor and/or components of the downstream signal transduction pathway induced by LL-37. This review summarizes the current knowledge on molecular mechanisms underlying LL-37-induced receptor activation.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Elien Van Sinay; Olivier Mirabeau; Geert Depuydt; Matthias B. Van Hiel; Katleen Peymen; Jan Watteyne; Sven Zels; Liliane Schoofs; Isabel Beets
Significance The hypothalamic neuropeptide TRH (thyrotropin-releasing hormone) is one of the major endocrine factors that regulate vertebrate physiology. For decades the general assumption has been that TRH neuropeptides are not present in protostomes, at least not in ecdysozoans, despite the presence of TRH receptor orthologs in these phyla. Here we identify a TRH-related neuropeptide–receptor pathway in the nematode Caenorhabditis elegans. TRH-like neuropeptides activate the C. elegans TRH receptor ortholog in cell-culture cells. Using RNAi and CRISPR/Cas9 reverse genetics, we discovered that TRH-related signaling in the pharyngeal system promotes C. elegans growth. Our study provides evidence of a functional TRH neuropeptide–receptor pathway in invertebrates, suggesting that TRH signaling had evolved in a bilaterian ancestor more than 700 million years ago. In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in C. elegans. TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.
Peptides | 2013
Vincent van Hoef; Bert Breugelmans; Jornt Spit; Gert Simonet; Sven Zels; Jozef Vanden Broeck
In mammalian pancreatic cells, the pancreatic secretory trypsin inhibitor (PSTI) belonging to the Kazal-family prevents the premature activation of digestive enzymes and thus plays an important role in a protective mechanism against tissue destruction by autophagy. Although a similar protective mechanism exists in Arthropoda, the distribution of these inhibitors in this phylum remains obscure. A comprehensive in silico search of nucleotide databases, revealed the presence of members of the Kazal-family in the four major subphyla of the Arthropoda. Especially in the Hexapoda and the Crustacea these inhibitors are widespread, while in the Chelicerata and Myriapoda only a few Kazal-like protease inhibitors were found. A sequence alignment of inhibitors retrieved in the digestive system of insects revealed a conservation of the PSTI characteristics and strong resemblance to vertebrate PSTI. A phylogenetic analysis of these inhibitors showed that they generally cluster according to their order. The results of this data mining study provide new evidence for the existence of an ancient protective mechanism in metazoan digestive systems. Kazal-like inhibitors, which play an important protective role in the pancreas of vertebrates, also seem to be present in Arthropoda.
Peptides | 2012
Jornt Spit; Bert Breugelmans; Vincent van Hoef; Gert Simonet; Sven Zels; Jozef Vanden Broeck
The main reason for the varying degrees of success of peptidase inhibitors (PI) as biological insecticides is the existence of a poorly understood mechanism, which allows pest insects to compensate for PI present in their diet. To challenge this highly flexible physiological mechanism and to prolong the inhibitory effect of PI on insect growth, a number of measures were taken into account before and during experiments with a notorious pest insect, the desert locust, Schistocerca gregaria: (i) non-plant PI (pacifastin-related inhibitors) were used to reduce the risk of a specific co-evolutionary adaptation of the pest insect, (ii) based on the main types of digestive enzymes present in the midgut, mixtures of multiple PI with different enzyme specificity were selected, allowing for a maximal inhibition of the proteolytic activity and (iii) digestive peptidase samples were taken during oral administration experiments to study compensatory mechanisms. Contrary to larvae fed on a diet containing plant-derived PI, a significant growth impediment was observed in larvae that were fed a mixture of different pacifastin-like PI. Nevertheless, the growth inhibition effect of this PI mixture attenuated after a few days, Moreover, a comprehensive study of the observed responses after oral administration of PI revealed that S. gregaria larvae can adjust their secreted digestive enzyme activities in two distinct ways depending on the composition/concentration of the PI-mixture.