Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svend Kjær is active.

Publication


Featured researches published by Svend Kjær.


Nature Cell Biology | 2007

The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1

Helene Plun-Favreau; Kristina Klupsch; Nicoleta Moisoi; Sonia Gandhi; Svend Kjær; David Frith; Kirsten Harvey; Emma Deas; Robert J. Harvey; Neil Q. McDonald; Nicholas W. Wood; L. Miguel Martins; Julian Downward

In mice, targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinsons disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinsons disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinsons disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinsons disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.


Immunity | 2012

F-Actin Is an Evolutionarily Conserved Damage-Associated Molecular Pattern Recognized by DNGR-1, a Receptor for Dead Cells

Susan Ahrens; Santiago Zelenay; David Sancho; Pavel Hanč; Svend Kjær; Christoph Feest; Georgina Fletcher; Charlotte H. Durkin; Antonio Postigo; Mark Skehel; Facundo D. Batista; Barry J. Thompson; Michael Way; Caetano Reis e Sousa; Oliver Schulz

Sterile inflammation can be initiated by innate immune recognition of markers of tissue injury termed damage-associated molecular patterns (DAMPs). DAMP recognition by dendritic cells (DCs) has also been postulated to lead to T cell responses to foreign antigens in tumors or allografts. Many DAMPs represent intracellular contents that are released upon cell damage, notably after necrosis. In this regard, we have previously described DNGR-1 (CLEC9A) as a DC-restricted receptor specific for an unidentified DAMP that is exposed by necrotic cells and is necessary for efficient priming of cytotoxic T cells against dead cell-associated antigens. Here, we have shown that the DNGR-1 ligand is preserved from yeast to man and corresponds to the F-actin component of the cellular cytoskeleton. The identification of F-actin as a DNGR-1 ligand suggests that cytoskeletal exposure is a universal sign of cell damage that can be targeted by the innate immune system to initiate immunity.


Human Molecular Genetics | 2011

PINK1 Cleavage at position A103 by the mitochondrial protease PARL

Emma Deas; Helene Plun-Favreau; Sonia Gandhi; Howard Desmond; Svend Kjær; Samantha H. Y. Loh; Alan E. Renton; Robert J. Harvey; Alexander J. Whitworth; L. Miguel Martins; Andrey Y. Abramov; Nicholas W. Wood

Mutations in PTEN-induced kinase 1 (PINK1) cause early onset autosomal recessive Parkinsons disease (PD). PINK1 is a 63 kDa protein kinase, which exerts a neuroprotective function and is known to localize to mitochondria. Upon entry into the organelle, PINK1 is cleaved to produce a ∼53 kDa protein (ΔN-PINK1). In this paper, we show that PINK1 is cleaved between amino acids Ala-103 and Phe-104 to generate ΔN-PINK1. We demonstrate that a reduced ability to cleave PINK1, and the consequent accumulation of full-length protein, results in mitochondrial abnormalities reminiscent of those observed in PINK1 knockout cells, including disruption of the mitochondrial network and a reduction in mitochondrial mass. Notably, we assessed three N-terminal PD-associated PINK1 mutations located close to the cleavage site and, while these do not prevent PINK1 cleavage, they alter the ratio of full-length to ΔN-PINK1 protein in cells, resulting in an altered mitochondrial phenotype. Finally, we show that PINK1 interacts with the mitochondrial protease presenilin-associated rhomboid-like protein (PARL) and that loss of PARL results in aberrant PINK1 cleavage in mammalian cells. These combined results suggest that PINK1 cleavage is important for basal mitochondrial health and that PARL cleaves PINK1 to produce the ΔN-PINK1 fragment.


Journal of Biological Chemistry | 2006

Structure and chemical inhibition of the RET tyrosine kinase domain.

Phillip P. Knowles; Judith Murray-Rust; Svend Kjær; Rizaldy P. Scott; Sarah Hanrahan; Massimo Santoro; Carlos F. Ibáñez; Neil Q. McDonald

The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B. We report here the biochemical characterization of the human RET tyrosine kinase domain and the structure determination of the non-phosphorylated and phosphorylated forms. Both structures adopt the same active kinase conformation competent to bind ATP and substrate and have a pre-organized activation loop conformation that is independent of phosphorylation status. In agreement with the structural data, enzyme kinetic data show that autophosphorylation produces only a modest increase in activity. Longer forms of RET containing the juxtamembrane domain and C-terminal tail exhibited similar kinetic behavior, implying that there is no cis-inhibitory mechanism within the RET intracellular domain. Our results suggest the existence of alternative inhibitory mechanisms, possibly in trans, for the autoregulation of RET kinase activity. We also present the structures of the RET tyrosine kinase domain bound to two inhibitors, the pyrazolopyrimidine PP1 and the clinically relevant 4-anilinoquinazoline ZD6474. These structures explain why certain multiple endocrine neoplasia 2-associated RET mutants found in patients are resistant to inhibition and form the basis for design of more effective inhibitors.


Journal of Biological Chemistry | 2001

Molecular Modeling of the Extracellular Domain of the RET Receptor Tyrosine Kinase Reveals Multiple Cadherin-like Domains and a Calcium-binding Site

Jonas Anders; Svend Kjær; Carlos F. Ibáñez

Using bioinformatic tools, mutagenesis, and binding studies, we have investigated the structural organization of the extracellular region of the RET receptor tyrosine kinase, a functional receptor for glial cell line-derived neurotrophic factor (GDNF). Multiple sequence alignments of seven vertebrate sequences and one invertebrate RET sequence delineated four distinct N-terminal domains, each of about 110 residues, containing many of the consensus motifs of the cadherin fold. Based on these alignments and the crystal structures of epithelial and neural cadherins, we have generated molecular models of each of the four cadherin-like domains in the extracellular region of human RET. The modeled structures represent realistic models from both energetic and geometrical points of view and are consistent with previous observations gathered from biochemical analyses of the effects of Hirschsprungs disease mutations affecting the folding and stability of the RET molecule, as well as our own site-directed mutagenesis studies of RET cadherin-like domain 1. We have also investigated the role of Ca2+ in ligand binding by RET and found that Ca2+ ions are required for RET binding to GDNF but not for GDNF binding to the GFRα1 co-receptor. In agreement with these results, RET, but not GFRα1, was found to bind Ca2+ directly. Our results indicate that the overall architecture of the extracellular region of RET is more closely related to cadherins than previously thought. The models of the cadherin-like domains of human RET represent valuable tools with which to guide future site-directed mutagenesis studies aimed at identifying residues involved in ligand binding and receptor activation.


Nature | 2014

A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome

Aline C. Simon; Jin C. Zhou; Rajika L. Perera; Frederick van Deursen; Cecile Evrin; Marina E. Ivanova; Mairi L. Kilkenny; Ludovic Renault; Svend Kjær; Dijana Matak-Vinkovic; Karim Labib; Alessandro Costa; Luca Pellegrini

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45–MCM–GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


Cell | 2013

14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins

Philippe Riou; Svend Kjær; Ritu Garg; Andrew Purkiss; Roger George; Robert J. Cain; Ganka Bineva; Nicolas Reymond; Brad McColl; Andrew J. Thompson; Nicola O’Reilly; Neil Q. McDonald; Peter J. Parker; Anne J. Ridley

Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.Summary Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.


Journal of Biological Chemistry | 2003

Identification of a Surface for Binding to the GDNF-GFRα1 Complex in the First Cadherin-like Domain of RET

Svend Kjær; Carlos F. Ibáñez

The RET receptor tyrosine kinase is activated by binding to a ligand complex formed by a member of the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors bound to its cognate GDNF-family receptor-α (GFRα) glycosylphosphatidylinositol-linked co-receptor. Molecular modeling studies of the extracellular domain of RET (RETECD) have revealed the existence of four cadherin-like domains (CLD1–4) followed by a cysteine-rich domain. Cross-linking experiments have indicated that the RETECD makes direct contacts with both the GDNF ligand and GFRα1 molecule in the complex, although it has low or no detectable affinity for either component alone. We have exploited sequence and functional divergences between the ectodomains of mammalian and amphibian RET molecules to map binding determinants in the human RETECD responsible for its interaction with the GDNF-GFRα1 complex by homologue-scanning mutagenesis. We found that Xenopus RETECD was unable to bind to GDNF-GFRα-1 or neurturin (NTN)-GFRα-2 complexes of mammalian origin. However, a chimeric molecule containing CLD1, -2, and -3 from human RETECD, but neither domain alone, had similar binding activity as compared with wild type human RETECD, suggesting the existence of an extended ligand binding surface within the three N-terminal cadherin-like domains of human RETECD. Subsequent loss-of-function experiments at higher resolution identified three small subsets of residues, mapping on the same face of the molecular model of RET CLD1, that were required for the interaction of human RETECD with the GDNF-GFRα1 complex. Additional experiments demonstrated that N-linked glycosylation of human RETECD was not required for ligand binding. Based on these observations, we propose a model for the assembly and architecture of the GDNF-GFRα1-RET complex.


Bioorganic & Medicinal Chemistry | 2010

Synthesis, Structure-Activity Relationship and Crystallographic Studies of 3-Substituted Indolin-2-One Ret Inhibitors.

Luca Mologni; Roberta Rostagno; Stefania Brussolo; Phillip P. Knowles; Svend Kjær; Judith Murray-Rust; Enrico Rosso; Alfonso Zambon; Leonardo Scapozza; Neil Q. McDonald; Vittorio Lucchini; Carlo Gambacorti-Passerini

The synthesis, structure-activity relationships (SAR) and structural data of a series of indolin-2-one inhibitors of RET tyrosine kinase are described. These compounds were designed to explore the available space around the indolinone scaffold within RET active site. Several substitutions at different positions were tested and biochemical data were used to draw a molecular model of steric and electrostatic interactions, which can be applied to design more potent and selective RET inhibitors. The crystal structures of RET kinase domain in complex with three inhibitors were solved. All three compounds bound in the ATP pocket and formed two hydrogen bonds with the kinase hinge region. Crystallographic analysis confirmed predictions from molecular modelling and helped refine SAR results. These data provide important information for the development of indolinone inhibitors for the treatment of RET-driven cancers.


Oncogene | 2006

Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations.

Svend Kjær; K Kurokawa; M Perrinjaquet; C Abrescia; Carlos F. Ibáñez

In patients with medullary thyroid carcinoma (MTC) and type 2A multiple endocrine neoplasia (MEN2A), mutations of cysteine residues in the extracellular juxtamembrane region of the RET receptor tyrosine kinase cause the formation of covalent receptor dimers linked by intermolecular disulfide bonds between unpaired cysteines, followed by oncogenic activation of the RET kinase. The close proximity to the plasma membrane of the affected cysteine residues prompted us to investigate the possible role of the transmembrane (TM) domain of RET (RET-TM) in receptor–receptor interactions underlying dimer formation. Strong self-association of the RET-TM was observed in a biological membrane. Mutagenesis studies indicated the involvement of the evolutionary conserved residues Ser-649 and Ser-653 in RET-TM oligomerization. Unexpectedly, RET-TM interactions were also abrogated in the A639G/A641R double mutant, first identified in a sporadic case of MTC. In agreement with this, no transforming activity could be detected in full-length RET carrying the A639G and A641R mutations, which remained fully responsive to glial cell-line-derived neurotrophic factor (GDNF) stimulation. When introduced in the context of C634R – a cysteine replacement that is prevalent in MEN2A cases – the A639G/A641R mutations significantly reduced dimer formation and transforming activity in this otherwise highly oncogenic RET variant. These data suggest that a strong propensity to self-association in the RET-TM underlies – and may be required for – dimer formation and oncogenic activation of juxtamembrane cysteine mutants of RET, and explains the close proximity to the plasma membrane of cysteine residues implicated in MEN2A and MTC syndromes.

Collaboration


Dive into the Svend Kjær's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabel Borg

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge