Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svend Sparre Geertsen is active.

Publication


Featured researches published by Svend Sparre Geertsen.


Nature Neuroscience | 2007

Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback

Mark Schram Christensen; Jesper Lundbye-Jensen; Svend Sparre Geertsen; Tue Hvass Petersen; Olaf B. Paulson; Jens Bo Nielsen

Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex. This activation was associated with increased interaction with premotor cortex during voluntary movements, which demonstrates that perception of movements relies in part on predictions of sensory consequences of voluntary movements that are mediated by the premotor cortex.


Neuroscience & Biobehavioral Reviews | 2013

The effects of cardiovascular exercise on human memory: A review with meta-analysis

Marc Roig; Sasja Nordbrandt; Svend Sparre Geertsen; Jens Bo Nielsen

We reviewed the evidence for the use of cardiovascular exercise to improve memory and explored potential mechanisms. Data from 29 and 21 studies including acute and long-term cardiovascular interventions were retrieved. Meta-analyses revealed that acute exercise had moderate (SMD=0.26; 95% CI=0.03, 0.49; p=0.03; N=22) whereas long-term had small (SMD=0.15; 95% CI=0.02, 0.27; p=0.02; N=37) effects on short-term memory. In contrast, acute exercise showed moderate to large (SMD=0.52; 95% CI=0.28, 0.75; p<0.0001; N=20) whereas long-term exercise had insignificant effects (SMD=0.07; 95% CI=-0.13, 0.26; p=0.51; N=22) on long-term memory. We argue that acute and long-term cardiovascular exercise represent two distinct but complementary strategies to improve memory. Acute exercise improves memory in a time-dependent fashion by priming the molecular processes involved in the encoding and consolidation of newly acquired information. Long-term exercise, in contrast, has negligible effects on memory but provides the necessary stimuli to optimize the responses of the molecular machinery responsible for memory processing. Strategically combined, acute and long-term interventions could maximize the benefits of cardiovascular exercise on memory.


The Journal of Physiology | 2011

Reciprocal Ia inhibition contributes to motoneuronal hyperpolarisation during the inactive phase of locomotion and scratching in the cat

Svend Sparre Geertsen; Katinka Stecina; Claire Francesca Meehan; Jens Bo Nielsen; Hans Hultborn

During a movement, the contraction of a given muscle group is often coordinated with the simultaneous relaxation of its antagonist muscles. The neural basis of this antagonist relaxation has been investigated in both animal and human experiments for decades and it is believed that activation of the Ia inhibitory interneurones by central motor programmes plays a major role in this relaxation of antagonist muscles. The alternating movements during locomotion would seem to especially require reciprocal actions, but recent studies have raised significant questions about the role of this inhibition. We found that inhibition evoked by these inhibitory interneurones is largest when their target motoneurones are inactive – even in the absence of supraspinal influence. The results of this work provide new evidence for the role of the Ia inhibitory interneurones during rhythmic motor activity. This supports the classical view of reciprocal inhibition as a basis for antagonist relaxation.


Journal of Applied Physiology | 2008

Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training

Svend Sparre Geertsen; Jesper Lundbye-Jensen; Jens Bo Nielsen

At the onset of dorsiflexion disynaptic reciprocal inhibition (DRI) of soleus motoneurons is increased to prevent activation of the antagonistic plantar flexors. This is caused by descending facilitation of transmission in the DRI pathway. Because the risk of eliciting stretch reflexes in the ankle plantar flexors at the onset of dorsiflexion is larger the quicker the movement, it was hypothesized that DRI may be increased when subjects are trained to perform dorsiflexion movements as quickly as possible For this purpose, 14 healthy human subjects participated in explosive strength training of the ankle dorsiflexor muscles 3 times a week for 4 wk. Test sessions were conducted before, shortly after, and 2 wk after the training period. The rate of torque development measured at 30, 50, 100, and 200 ms after onset of voluntary explosive isometric dorsiflexion increased by 24-33% (P < 0.05). DRI was measured as the depression of the soleus H reflex following conditioning stimulation of the peroneal nerve (1.1 x motor threshold) at an interval of 2-3 ms. At the onset of dorsiflexion the amount of DRI measured relative to DRI at rest increased significantly from 6% before the training to 22% after the training (P < 0.05). We speculate that DRI at the onset of movement may be increased in healthy subjects following explosive strength training to ensure efficient suppression of the antagonist muscles as the dorsiflexion movement becomes faster.


The Journal of Physiology | 2010

Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists.

Svend Sparre Geertsen; Abraham Theodoor Zuur; Jens Bo Nielsen

Flexion and extension movements are organized reciprocally, so that extensor motoneurones in the spinal cord are inhibited when flexor muscles are active and vice versa. During and just prior to dorsiflexion of the ankle, soleus motoneurones are thus inhibited as evidenced by a depression of the soleus H‐reflex. It is therefore surprising that soleus motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) have been found not to be reduced and even facilitated during a voluntary dorsiflexion. The objective of this study was to investigate if MEPs, evoked by TMS, show a similar facilitation prior to and at the onset of contraction of muscles that are antagonists to the muscle in which the MEP is evoked and if so, examine the origin of such a facilitatory motor programme. Eleven seated subjects reacted to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle. TMS was applied to the hotspot of TA and soleus muscles on separate days. Stimuli were delivered prior to and at the beginning of contraction. Soleus MEPs were significantly facilitated when TMS was applied 50 ms prior to onset of plantar flexion. Surprisingly, soleus MEPs were also facilitated (although to a lesser extent) at a similar time in relation to the onset of dorsiflexion. TA MEPs were facilitated 50 ms prior to onset of dorsiflexion and neither depressed nor facilitated prior to plantar flexion. No difference was found between the facilitation of the soleus MEP and motor evoked responses to cervicomedullary stimulation prior to dorsiflexion, suggesting that the increased soleus MEPs were not caused by changes at a cortical level. This was confirmed by the observation that short‐latency facilitation of the soleus H‐reflex by subthreshold TMS was increased prior to plantar flexion, but not prior to dorsiflexion. These findings suggest that voluntary contraction at the ankle is accompanied by preceding facilitation of antagonists by a subcortical motor programme. This may help to ensure that the direction of movement may be changed quickly and efficiently during functional motor tasks.


The Journal of Physiology | 2013

Interlimb communication to the knee flexors during walking in humans

Andrew James Thomas Stevenson; Svend Sparre Geertsen; Jacob Buus Andersen; Thomas Sinkjær; Jens Bo Nielsen; Natalie Mrachacz-Kersting

•  Following unexpected ipsilateral knee extension joint rotations applied during the late stance phase of the gait cycle in humans, a crossed reflex response was observed in the contralateral biceps femoris (cBF) muscle with a mean onset latency of 76 ms. •  Transcranial magnetic and electrical stimulation applied to the primary motor cortex revealed that a transcortical pathway probably contributes to the cBF response. •  We hypothesize that the cBF response signifies a preparation of the contralateral leg for early load bearing, helping the body to maintain dynamic stability during walking. •  This is the first study to show that a transcortical pathway contributes to an interlimb reflex in upper leg muscles. The transcortical nature of the response may allow for more adaptable responses than purely spinally mediated reflexes due to integration with other sensory information.


Clinical Neurophysiology | 2015

Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness

Svend Sparre Geertsen; Henrik Kirk; Jakob Lorentzen; Martin Jorsal; Claus Bo Johansson; Jens Bo Nielsen

OBJECTIVE It is still not clarified whether spasticity contributes to impairments of gait function. Here we compared biomechanical measures of muscle weakness and stiffness of ankle muscles to impairments of gait function in adults with cerebral palsy (CP). METHODS Twenty-four adults with CP (mean age 34.3, range 18-57 years) and fifteen healthy age-matched controls were biomechanically measured for passive and reflex-mediated stiffness of the ankle plantarflexors at rest, maximal voluntary plantarflexion and dorsiflexion effort (MVCpf,df) and rate of force development (RFDpf,df). Kinematic analysis of the ankle joint during treadmill walking was obtained by 3-D motion analysis. RESULTS Passive stiffness was significantly increased in adults with CP compared to controls. Passive stiffness and RFDdf were correlated to reduced toe lift. RFDpf provided the best correlation to push-off velocity, range of movement in the ankle joint and gait speed. Reflex-mediated stiffness was not correlated to any parameters of impaired gait. CONCLUSIONS Impaired gait function in adults with CP is associated with reduced RFD and increased passive stiffness of ankle muscles. SIGNIFICANCE These findings suggest that reduced rapid force generation and increased passive stiffness of ankle muscles rather than increased reflex-mediated stiffness (spasticity) likely contributes to impaired gait function in adults with CP.


PLOS ONE | 2016

Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity

Richard Thomas; Line K. Johnsen; Svend Sparre Geertsen; Lasse Christiansen; Christian Ritz; Marc Roig; Jesper Lundbye-Jensen

A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.


Clinical Neurophysiology | 2012

Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals

Jakob Lorentzen; Michael James Grey; Svend Sparre Geertsen; Fin Biering-Sørensen; Kelly Brunton; Monica A. Gorassini; Jens Bo Nielsen

OBJECTIVE Spasticity is a common complication with neurological diseases and CNS lesions. Instrumented systems to evaluate spasticity often cannot provide an immediate result, thus limiting their clinical usefulness. In this study we investigated the accuracy and reliability of the portable Neurokinetics RA1 Ridgidity Analyzer to measure stiffness of the ankle joint in 46 controls, 14 spinal cord injured (SCI) and 23 multiple sclerosis (MS) participants. METHODS Ankle stiffness measures were made twice by two raters, at speeds above and below the expected stretch reflex threshold. Ankle torque was measured with the portable device and a stationary torque motor. Inter- and intra-rater reliability was assessed with the intra-class correlation coefficient (ICC). RESULTS Stiffness measures with the portable and stationary devices were significantly correlated for controls and MS participants (p < 0.01). Intra-rater reliability for the portable device ranged from 0.60-0.89 (SCI) and 0.63-0.67 (control) and inter-rater reliability ranged from 0.70-0.73 (SCI) and 0.61-0.77 (control). Ankle stiffness measures in SCI and MS participants were significantly larger than in controls for both slow (p < 0.05) and fast movements (p < 0.01), with stiffness being larger for fast compared to slow movements in SCI and MS participants (p < 0.05), but not in controls (p = 0.5). CONCLUSION The portable device correlated well with measures obtained by a torque motor in both controls and MS participants, showed high intra- and inter-rater reliability for the SCI participants, and could easily distinguish between stiff and control ankle joints. However, the device, in its current form, may be less accurate during rapid movements when inertia contributes to stiffness and the shape of the air-filled pads did not provide a good interface with the foot. SIGNIFICANCE This study demonstrates that a portable device can potentially be a useful diagnostic tool to obtain reliable information of stiffness for the ankle joint.


Neural Plasticity | 2016

Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

Richard Thomas; Mikkel Malling Beck; Rune Rasmussen Lind; Line K. Johnsen; Svend Sparre Geertsen; Lasse Christiansen; Christian Ritz; Marc Roig; Jesper Lundbye-Jensen

High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.

Collaboration


Dive into the Svend Sparre Geertsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Ritz

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Richard Thomas

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge