Svetlana A. Maslakova
University of Oregon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana A. Maslakova.
FEBS Journal | 2007
Franz Oswald; Florian Schmitt; Alexandra Leutenegger; Sergey Ivanchenko; Cecilia D'Angelo; Anya Salih; Svetlana A. Maslakova; Maria Y. Bulina; Reinhold Schirmbeck; Gerd Ulrich Nienhaus; Mikhail V. Matz; Jörg Wiedenmann
For a variety of coral species, we have studied the molecular origin of their coloration to assess the contributions of host and symbiont pigments. For the corals Catalaphyllia jardinei and an orange‐emitting color morph of Lobophyllia hemprichii, the pigments belong to a particular class of green fluorescent protein‐like proteins that change their color from green to red upon irradiation with ∼400 nm light. The optical absorption and emission properties of these proteins were characterized in detail. Their spectra were found to be similar to those of phycoerythrin from cyanobacterial symbionts. To unambiguously determine the molecular origin of the coloration, we performed immunochemical studies using double diffusion in gel analysis on tissue extracts, including also a third coral species, Montastrea cavernosa, which allowed us to attribute the red fluorescent coloration to green‐to‐red photoconvertible fluorescent proteins. The red fluorescent proteins are localized mainly in the ectodermal tissue and contribute up to 7.0% of the total soluble cellular proteins in these species. Distinct spatial distributions of green and cyan fluorescent proteins were observed for the tissues of M. cavernosa. This observation may suggest that differently colored green fluorescent protein‐like proteins have different, specific functions. In addition to green fluorescent protein‐like proteins, the pigments of zooxanthellae have a strong effect on the visual appearance of the latter species.
PLOS ONE | 2010
Hai-Xia Chen; Malin Strand; Jon L. Norenburg; Shi-Chun Sun; Hiroshi Kajihara; Alexey V. Chernyshev; Svetlana A. Maslakova; Per Sundberg
Background It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Methodology/Principal Findings Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Conclusions/Significance Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.
Frontiers in Zoology | 2010
Svetlana A. Maslakova
BackgroundThe nemertean pilidium is one of the most notable planktotrophic larval types among marine invertebrates. The juvenile forms inside the larva from a series of isolated rudiments, called the imaginal discs. The development culminates in catastrophic metamorphosis, in which the larval body is consumed by the juvenile worm. Although the pilidium was first described in 1847, and is commonly found among marine plankton, there is not a single complete description of its development. The few published studies of pilidial development are based on observations of typically unidentified larvae opportunistically collected from plankton at various developmental stages.ResultsThe development of Micrura alaskensis, a common Northwest Pacific coast intertidal nemertean, is described from fertilization to metamorphosis. A staging scheme is proposed based on characteristic developmental milestones. Three pairs of imaginal discs develop as invaginations of larval epidermis. The cephalic discs invaginate from the larval epidermis above the ciliated band, while the cerebral organ discs and the trunk discs invaginate below the ciliated band. All paired imaginal disc invaginations are closely associated with different portions of the larval ciliated band. In addition, two unpaired rudiments contribute to the juvenile - the proboscis rudiment and the dorsal rudiment, which do not develop as invaginations. A pair of thick-walled esophageal pouches previously thought to represent nephridial rudiments give rise to the juvenile foregut. Branched rudiments of protonephridia, and their efferent ducts are also described. Larval and juvenile serotonergic nervous systems are briefly described. Development of the juvenile is completed by 5-8 weeks at 11-15 degrees C. During the rapid metamorphosis the juvenile emerges from and devours the larva.ConclusionsThis study is the first description of pilidial development from fertilization to metamorphosis in a single species. It is illustrated with photomicrographs of live larvae, diagrams, confocal images, and videos. The findings are discussed in the context of previously published accounts of pilidial development, with which they disagree on several accounts. The results described here indicate a different number, origin and fate of various juvenile rudiments. The proposed staging scheme will be useful in subsequent studies of pilidial development.
Integrative and Comparative Biology | 2010
Svetlana A. Maslakova
One of the most remarkable larval types among spiralians, and invertebrates in general, is the planktotrophic pilidium. The pilidium is found in a single clade of nemerteans, called the Pilidiophora, and appears to be an innovation of this group. All other nemerteans have either planktotrophic or lecithotrophic juvenile-like planuliform larvae or have direct development. The invention of the pilidium larva is associated with the formation of an extensive blastocoel that supports the delicate larval frame and elaborate ciliary band. Perhaps the most striking characteristic of the pilidium is the way the juvenile worm develops inside the larva from a series of isolated rudiments, called the imaginal discs. The paired cephalic discs, cerebral organ discs, and trunk discs originate as invaginations of larval epidermis and subsequently grow and fuse around the larval gut to form the juvenile. The fully formed juvenile ruptures the larval body and, more often than not, devours the larva during catastrophic metamorphosis. This review is an attempt to examine the pilidium in the context of recent data on development of non-pilidiophoran nemerteans, and speculate about the evolution of pilidial larval development. The author emphasizes the difference between the planuliform larvae of Palaeonemerteans and Hoplonemerteans, and suggest a new name for the hoplonemertean larvae--the decidula.
The Biological Bulletin | 2009
Svetlana A. Maslakova; Jörn von Döhren
We describe development of the hoplonemertean Paranemertes peregrina from fertilization to juvenile, using light, confocal, and electron microscopy. We discovered that the uniformly ciliated lecithotrophic larva of this species has a transitory epidermis, which is gradually replaced by the definitive epidermis during the course of planktonic development. The approximately 90 large multiciliated cleavage-arrested cells of the transitory larval epidermis become separated from each other by intercalating cells of the definitive epidermis, then gradually diminish in size and disappear more or less simultaneously. Rudiments of all major adult structures—the gut, proboscis, cerebral ganglia, lateral nerve cords, and cerebral organs—are already present in 4-day-old larvae. Replacement of the epidermis is the only overt metamorphic transformation of larval tissue; larval structures otherwise prefigure the juvenile body, which is complete in about 10 days at 7–10 °C. Our findings on development of digestive system, nervous system, and proboscis differ in several ways from previous descriptions of hoplonemertean development. We report development with transitory epidermis in two other species, review evidence from the literature, and suggest that this developmental type is the rule for hoplonemerteans. The hoplonemertean planuliform larva is fundamentally different both from the pilidium larva of the sister group to the Hoplonemertea, the Pilidiophora, and from the hidden trochophore of palaeonemerteans. We discuss the possible function and homology of the larval epidermis in development of other nemerteans and spiralians in general.
Evodevo | 2015
Laurel S. Hiebert; Svetlana A. Maslakova
BackgroundMaximally indirect development via a pilidium larva is unique to the pilidiophoran clade of phylum Nemertea. All other nemerteans have more or less direct development. The origin of pilidial development with disjunct invaginated juvenile rudiments and catastrophic metamorphosis remains poorly understood. While basal members of the phylum, the Palaeonemertea, do not appear to have ever had a pilidium, certain similarity exists in the development of the Pilidiophora and the sister clade, the Hoplonemertea. It is unclear whether this similarity represents the homology and whether pilidial development evolved before or after pilidiophorans diverged from hoplonemerteans. To gain insight into these questions, we examined the expression of Hox, Cdx, and Six3/6 genes in the development of the hoplonemertean Pantinonemertes californiensis and expression of Six3/6 in the pilidium of Micrura alaskensis. To further characterize the function of larval structures showing expression of these genes, we examined the serotonergic nervous system and cell proliferation in P. californiensis.ResultsWe show that Hox and Cdx genes, which pattern the pilidial imaginal discs giving rise to the juvenile trunk, are expressed in paired posterior epidermal invaginations in P. californiensis larvae. We also show that Six3/6 patterns both the pilidial cephalic discs, which give rise to the juvenile head, and a pair of anterior epidermal invaginations in hoplonemertean development. We show that anterior invaginations in larval P. californiensis are associated with a pair of serotonergic neurons, and thus may have a role in the development of the juvenile nervous system. This is similar to the role of cephalic discs in pilidiophoran development. Finally, we show that four zones of high cell proliferation correspond to the paired invaginations in P. californiensis, suggesting that these invaginations may play a similar role in the development of the hoplonemertean juvenile to the role of imaginal discs in the pilidium, which also exhibit high rates of cell proliferation.ConclusionsExpression of Hox, Cdx, and Six3/6 genes supports the homology between the imaginal discs of the pilidium and the paired larval invaginations in hoplonemerteans. This suggests that invaginated juvenile rudiments (possible precursors to pilidial imaginal discs) may have been present in the most recent common ancestor of the Pilidiophora and Hoplonemertea.
BMC Biology | 2015
Laurel S. Hiebert; Svetlana A. Maslakova
BackgroundThe pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora. While the sister clade of the Pilidiophora and the basal nemerteans develop directly, pilidiophorans have a long-lived planktotrophic larva with a body plan distinctly different from that of the juvenile. Uniquely, the pilidiophoran juvenile develops inside the larva from several discrete rudiments. The orientation of the juvenile with respect to the larval body varies within the Pilidiophora, which suggests that the larval and juvenile anteroposterior (AP) axes are patterned differently. In order to gain insight into the evolutionary origins of the pilidium larva and the mechanisms underlying this implied axial uncoupling, we examined the expression of the Hox genes during development of the pilidiophoran Micrura alaskensis.ResultsWe identified sequences of nine Hox genes and the ParaHox gene caudal through a combination of transcriptome analysis and molecular cloning, and determined their expression pattern during development using in situ hybridization in whole-mounted larvae. We found that Hox genes are first expressed long after the pilidium is fully formed and functional. The Hox genes are expressed in apparently overlapping domains along the AP axis of the developing juvenile in a subset of the rudiments that give rise to the juvenile trunk. Hox genes are not expressed in the larval body at any stage of development.ConclusionsWhile the Hox genes pattern the juvenile pilidiophoran, the pilidial body, which appears to be an evolutionary novelty, must be patterned by some mechanism other than the Hox genes. Although the pilidiophoran juvenile develops from separate rudiments with no obvious relationship to the embryonic formation of the larva, the Hox genes appear to exhibit canonical expression along the juvenile AP axis. This suggests that the Hox patterning system can maintain conserved function even when widely decoupled from early polarity established in the egg.
Journal of Natural History | 2008
Svetlana A. Maslakova; Jon L. Norenburg
A new species of Prosorhochmus is described from Belize and Florida based on morphological, reproductive and sequence data. Similar to Prosorhochmus nelsoni (Sanchez, 1973), Prosorhochmus belizeanus sp. nov. is gonochoric and oviparous; all other species of Prosorhochmus are viviparous hermaphrodites. Prosorhochmus belizeanus sp. nov. differs from P. nelsoni by having significantly larger stylets and different arrangement of acidophilic cephalic glands. Sequence divergence between the two is 7.4% (16S) and 9.1% (COI), comparable to divergence from the viviparous hermaphroditic species. Prosorhochmus Keferstein, 1862 is revised based on re‐evaluation of the type and voucher material as well as fresh specimens collected by us. We conclude that Prosorhochmus adriaticus Senz, 1993 is insufficiently described and cannot be distinguished from Prosorhochmus claparedii Keferstein, 1862. We re‐establish Prosorhochmus korotneffi Bürger, 1895 from its previous synonymization with P. claparedii and designate it as type species of Arhochmus gen. nov.
Hydrobiologia | 2001
Svetlana A. Maslakova; Jon L. Norenburg
Pelagic polystiliferous nemerteans, often referred to as Pelagica, represent one of the most enigmatic groups of nemerteans. The group includes 98 valid species assorted into 41 genera and 3–11 families, depending on the classification. Pelagica inhabit the water column of the world oceans, occupying depths from several hundred to several thousand meters. As is the case with most meso- or bathypelagic soft-bodied animals, specimens are few and numerous difficulties are associated with obtaining and preserving them, resulting in incomplete descriptions and, therefore, an obscure classification. Most genera and families of pelagic nemerteans are based upon unique combinations of two or three characters. Here, we present results of the first cladistic analysis of pelagic nemertean phylogeny. The analysis is based on morphological character data available from the primary literature and personal observations. A large percentage of missing entries in the data (21.5%), due to incompleteness of descriptions, results in a large number of maximum parsimonious cladograms, which translates into a drastic lack of resolution on the strict consensus tree. Traditional families supported by the cladistic analysis are Armaueriidae Brinkmann, 1917 and Pelagonemertidae (sensu Korotkevitsch, 1955). We propose a new diagnosis for Armaueriidae and discuss morphological characters traditionally used in pelagic nemertean classification. A few potentially informative characters are suggested for greater attention in future studies of specimens.
The International Journal of Developmental Biology | 2014
Svetlana A. Maslakova; Terra C. Hiebert
Nemerteans, a phylum of marine lophotrochozoan worms, have a biphasic life history with benthic adults and planktonic larvae. Nemertean larval development is traditionally categorized into direct and indirect. Indirect development via a long-lived planktotrophic pilidium larva is thought to have evolved in one clade of nemerteans, the Pilidiophora, from an ancestor with a uniformly ciliated planuliform larva. Planuliform larvae in a member of a basal nemertean group, the Palaeonemertea, have been previously shown to possess a vestigial prototroch, homologous to the primary larval ciliated band in the trochophores of other spiralian phyla, such as annelids and mollusks. We review literature on nemertean larval development, and include our own unpublished observations. We highlight recent discoveries of numerous pilidiophoran species with lecithotrophic larvae. Some of these larvae superficially resemble uniformly ciliated planuliform larvae of other nemerteans. Others possess one or two transverse ciliary bands, which superficially resemble the prototroch and telotroch of some spiralian trochophores. We also summarize accumulating evidence for planktotrophic feeding by larvae of the order Hoplonemertea, which until now were considered to be lecithotrophic. We suggest that 1) non-feeding pilidiophoran larval forms are derived from a feeding pilidium; 2) such forms have likely evolved many times independently within the Pilidiophora; 3) any resemblance of such larvae to the trochophores of other spiralians is a result of convergence and that 4) the possibility of planktotrophy in hoplonemertean larvae may influence estimates of pelagic larval duration, dispersal, and population connectivity in this group.