Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetlana Dzitoyeva is active.

Publication


Featured researches published by Svetlana Dzitoyeva.


Molecular Psychiatry | 2001

Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system

Svetlana Dzitoyeva; Nikola Dimitrijevic; Hari Manev

RNA interference (RNAi) is a gene silencing mechanism that can be triggered by introducing double-stranded RNA (dsRNA) into cells expressing the appropriate molecular machinery, which then degrades the corresponding endogenous mRNA. RNAi can be used for determining gene function and creating functional ‘knockout’ organisms. Here we show for the first time that RNAi can be induced in adult fruit flies by injecting dsRNA into the abdomen of anesthetized Drosophila, and that this method can also target genes expressed in the central nervous system (CNS). Two genes were targeted to investigate the effects of dsRNA injection on their mRNA content; lacZ transgene (expressed either in the gut or in the CNS), and GM06434, the Drosophila homologue of the C. elegans gene nrf (nose resistant to fluoxetine). Both the transgene and the endogenous gene were successfully silenced in adult Drosophila by intra-abdominal injection of their respective dsRNA. We propose that our method of RNAi in adult flies can be used to characterize gene functioning in the CNS without the typical interference in development found in most gene mutation studies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

γ-Aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: Adult RNA interference and pharmacological evidence

Svetlana Dzitoyeva; Nikola Dimitrijevic; Hari Manev

In addition to their physiological function, metabotropic receptors for neurotransmitter γ-aminobutyric acid (GABA), the GABAB receptors, may play a role in the behavioral actions of addictive compounds. Recently, GABAB receptors were cloned in fruit flies (Drosophila melanogaster), indicating that the advantages of this experimental model could be applied to GABAB receptor research. RNA interference (RNAi) is an endogenous process triggered by double-stranded RNA and is being used as a tool for functional gene silencing and functional genomics. Here we show how cell-nonautonomous RNAi can be induced in adult fruit flies to silence a subtype of GABAB receptors, GABABR1, and how RNAi combined with pharmacobehavioral techniques (including intraabdominal injections of active compounds and a computer-assisted quantification of behavior) can be used to functionally characterize these receptors. We observed that injection of double-stranded RNA complementary to GABABR1 into adult Drosophila selectively destroys GABABR1 mRNA and attenuates the behavioral actions of the GABAB agonist, 3-aminopropyl-(methyl)phosphinic acid. Moreover, both GABABR1 RNAi and the GABAB antagonist CGP 54626 reduced the behavior-impairing effects of ethanol, suggesting a putative role for the Drosophila GABAB receptors in alcohols mechanism of action. The Drosophila model we have developed can be used for further in vivo functional characterization of GABAB receptor subunits and their involvement in the molecular and systemic actions of addictive substances.


Restorative Neurology and Neuroscience | 2012

Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus

Hu Chen; Svetlana Dzitoyeva; Hari Manev

PURPOSE Aging is believed to affect epigenetic marking of brain DNA with 5-methylcytosine (5mC) and possibly via the 5mC to 5-hydroxymethylcytosine (5hmC) conversion by TET (ten-eleven translocation) enzymes. We investigated the impact of aging on hippocampal DNA 5-hydroxymethylation including in the sequence of aging-susceptible 5-lipoxygenase (5-LOX) gene. METHODS Hippocampal samples were obtained from C57BL6 mice. Cellular 5hmC localization was determined by immunofluorescence. The global 5mC and 5hmC contents were measured with the corresponding ELISA. The 5-LOX 5hmC content was measured using a glucosyltransferase/enzymatic restriction digest assay. TET mRNA was measured using qRT-PCR. RESULTS Global hippocampal 5hmC content increased during aging as did the 5hmC content in the 5-LOX gene. This occurred without alterations of TET1-3 mRNAs and without changes in the content of 8-hydroxy-2-deoxy-guanosine, a marker of non-enzymatic DNA oxidation. CONCLUSIONS The aging-associated increase of hippocampal 5hmC content (global and 5-LOX) appears to be unrelated to oxidative stress. It may be driven by an altered activity but not by the increased expression of the three TET enzymes. Global 5hmC content was increased during aging in the absence of 5mC decrease, suggesting that 5hmC could act as an epigenetic marker and not only as an intermediary in DNA demethylation. Further research is needed to elucidate the functional implications of the impact of aging on hippocampal cytosine hydroxymethylation.


Neurobiology of Aging | 2012

Effect of aging on 5-hydroxymethylcytosine in brain mitochondria

Svetlana Dzitoyeva; Hu Chen; Hari Manev

Nuclear epigenetics of the mammalian brain is modified during aging. Little is known about epigenetic modifications of mitochondrial DNA (mtDNA). We analyzed brain samples of 4- and 24-month-old mice and found that aging decreased mtDNA 5-hydroxymethylcytosine (5hmC) but not 5-methylcytosine (5mC) levels in the frontal cortex but not the cerebellum. Transcript levels of selected mtDNA-encoded genes increased during aging in the frontal cortex only. Aging affected the expression of enzymes involved in 5-methylcytosine and 5-hydroxymethylcytosine synthesis (mitochondrial DNA methyltransferase 1 [mtDNMT1] and ten-eleven-translocation [TET]1-TET3, respectively). In the frontal cortex, aging decreased mtDNMT1 messenger RNA (mRNA) levels without affecting TET1-TET3 mRNAs. In the cerebellum, TET2 and TET3 mRNA content was increased but mtDNMT1 mRNA was unaffected. Using Western immunoblotting of samples from primary neuronal cultures, we found TET immunoreactivity in the mitochondrial fraction. At the single cell level, TET immunoreactivity was detected in the nucleus and in the perinuclear/intraneurite areas where it frequently colocalized with a mitochondrial marker. Our results demonstrated the presence and susceptibility to aging of mitochondrial epigenetic mechanisms in the mammalian brain.


Biological Psychiatry | 2015

Brain-Derived Neurotrophic Factor Epigenetic Modifications Associated with Schizophrenia-like Phenotype Induced by Prenatal Stress in Mice

Erbo Dong; Svetlana Dzitoyeva; Francesco Matrisciano; Patricia Tueting; Dennis R. Grayson; Alessandro Guidotti

BACKGROUND Prenatal stress (PRS) is considered a risk factor for several neurodevelopmental disorders including schizophrenia (SZ). An animal model involving restraint stress of pregnant mice suggests that PRS induces epigenetic changes in specific GABAergic and glutamatergic genes likely to be implicated in SZ, including the gene for brain-derived neurotrophic factor (BDNF). METHODS Studying adult offspring of pregnant mice subjected to PRS, we explored the long-term effects of PRS on behavior and on the expression of key chromatin remodeling factors including DNA methyltransferase 1, ten-eleven-translocation hydroxylases, methyl CpG binding protein 2, histone deacetylases, and histone methyltransferases and demethylase in the frontal cortex and hippocampus. We also measured the expression of BDNF. RESULTS Adult PRS offspring demonstrate behavioral abnormalities suggestive of SZ and molecular changes similar to changes seen in postmortem brains of patients with SZ. This includes a significant increase in DNA methyltransferase 1 and ten-eleven-translocation hydroxylase 1 in the frontal cortex and hippocampus but not in cerebellum; no changes in histone deacetylases, histone methyltransferases and demethylases, or methyl CpG binding protein 2, and a significant decrease in Bdnf messenger RNA variants. The decrease of the corresponding Bdnf transcript level was accompanied by an enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at Bdnf gene regulatory regions. In addition, the expression of Bdnf transcripts (IV and IX) correlated positively with social approach in both PRS mice and nonstressed mice. CONCLUSIONS Because patients with psychosis and PRS mice show similar epigenetic signature, PRS mice may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with SZ.


European Journal of Pharmacology | 2012

Effect of valproic acid on mitochondrial epigenetics

Hu Chen; Svetlana Dzitoyeva; Hari Manev

Valproic acid (valproate), an anticonvulsant and a mood stabilizer, is a potent histone deacetylase inhibitor and a widely utilized pharmacological tool for neuroepigenetic research including DNA methylation. However, only nuclear but not mitochondrial DNA (mtDNA) has been investigated for the effects of valproate on the formation of 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). Using mouse 3T3-L1 cells, we investigated the effects of short (1 day) and prolonged (3 days) valproate treatment on global mtDNA 5 mC content, global and mtDNA sequence-specific 5 hmC content, mRNA levels for ten-eleven-translocation (TET) enzymes involved in 5 hmC formation, and the mitochondrial content of TET proteins. Only 5 hmC but not 5 mC content in mtDNA was affected (decreased) by valproate, and only after the prolonged treatment. This action of valproate was mimicked by MS-275, a class I histone deacetylase inhibitor. The prolonged but not the short valproate treatment decreased the expression of Tet1 mRNA and reduced the mitochondrial content of the TET1 protein. Hence, a likely scenario for a valproate-induced 5 hmC decrease in mtDNA may involve nuclear histone deacetylase inhibition (mitochondria do not contain histones) causing the initial increase of Tet1 transcription, which is followed by a delayed compensatory decrease of Tet1 expression and a reduced presence of TET1 protein in mitochondria. Further research is needed to elucidate the functional implications of epigenetic modifications of mtDNA. The observed effects of valproate on mitochondrial epigenetics may have implications for a better understanding of both therapeutic and unwanted effects of this drug and possibly other histone deacetylase inhibitors.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

Cyclooxygenases and 5-lipoxygenase in Alzheimer's disease

Hari Manev; Hu Chen; Svetlana Dzitoyeva; Radmila Manev

Typically, cyclooxygenases (COXs) and 5-lipoxygenase (5-LOX), enzymes that generate biologically active lipid molecules termed eicosanoids, are considered inflammatory. Hence, their putative role in Alzheimers disease (AD) has been explored in the framework of possible inflammatory mechanisms of AD pathobiology. More recent data indicate that these enzymes and the biologically active lipid molecules they generate could influence the functioning of the central nervous system and the pathobiology of neurodegenerative disorders such as AD via mechanisms different from classical inflammation. These mechanisms include the cell-specific localization of COXs and 5-LOX in the brain, the type of lipid molecules generated by the activity of these enzymes, the type and the localization of receptors selective for a type of lipid molecule, and the putative interactions of the COXs and 5-LOX pathways with intracellular components relevant for AD such as the gamma-secretase complex. Considering the importance of these multiple and not necessarily inflammatory mechanisms may help us delineate the exact nature of the involvement of the brain COXs and 5-LOX in AD and would reinvigorate the search for novel targets for AD therapy.


Biomolecular Concepts | 2012

Mitochondrial DNA: A Blind Spot in Neuroepigenetics

Hari Manev; Svetlana Dzitoyeva; Hu Chen

Abstract Neuroepigenetics, which includes nuclear DNA modifications, such as 5-methylcytosine and 5-hydroxymethylcytosine and modifications of nuclear proteins, such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear DNA but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have the mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here, we summarize for the first time evidence supporting the existence of these mechanisms and propose the term ‘mitochondrial epigenetics’ to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics – a gap that we expect to close in the near future.


Trends in Pharmacological Sciences | 2003

Techniques: fruit flies as models for neuropharmacological research.

Hari Manev; Nikola Dimitrijevic; Svetlana Dzitoyeva

An unlikely animal model is gaining popularity in neuropharmacological research: the 2-mm fruit fly (Drosophila melanogaster). Drugs have been administered to adult flies in their food and, more recently, via gasses and injections. Pharmacological tools have introduced behavioral alterations in Drosophila reminiscent of human behavior, rescued flies from gene-alteration-triggered neuropathologies, and triggered gene silencing. Combined, these methods hold promise for significant neuropharmacological advancement.


Neuroscience Letters | 2008

Stimulatory effects of a melatonin receptor agonist, ramelteon, on BDNF in mouse cerebellar granule cells.

Marta Imbesi; Tolga Uz; Svetlana Dzitoyeva; Hari Manev

Melatonin receptor activation has been linked to the regulation of neurotrophic factors, including the brain-derived neurotrophic factor (BDNF). To further characterize the effects of melatonin receptor stimulation on neuronal BDNF, we used a clinically available novel agonist for MT1 and MT2 melatonin receptors, ramelteon. Primary cultures of cerebellar granule cells (CGC) have been established as an in vitro model for studying neuronal BDNF. We took advantage of the availability of MT1- and MT2-deficient (knockout; KO) mice to employ primary CGC prepared from wild type (WT), MT1 KO, and MT2 KO mice. We investigated the effects of ramelteon on BDNF protein and mRNA content. Administered in a low nanomolar range, ramelteon increased BDNF protein content in all three types of mouse CGC. This ramelteon-triggered BDNF protein elevation was not preceded by a BDNF mRNA increase. However, it was prevented by treatment of cultures with a protein synthesis inhibitor cycloheximide. These results demonstrated that the MT1/MT2 melatonin receptor agonist ramelteon is capable of increasing BDNF protein in neurons expressing either of the two melatonin receptor types and that this action of ramelteon involves translational mechanisms. Further research is needed to explore the putative influence of ramelteon on BDNF-associated neuroplasticity.

Collaboration


Dive into the Svetlana Dzitoyeva's collaboration.

Top Co-Authors

Avatar

Hari Manev

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Imbesi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Hu Chen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Radmila Manev

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tolga Uz

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Alan Gutnov

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Louisa W. Ng

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Rosalba Satta

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sevim Yildiz

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge