Svetlana Klyatskaya
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana Klyatskaya.
Nature Materials | 2011
Matias Urdampilleta; Svetlana Klyatskaya; Jean-Pierre Cleuziou; Mario Ruben; Wolfgang Wernsdorfer
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.
Nature | 2012
Romain Vincent; Svetlana Klyatskaya; Mario Ruben; Wolfgang Wernsdorfer; Franck Balestro
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.
Science | 2014
Stefan Thiele; Franck Balestro; R. Ballou; Svetlana Klyatskaya; Mario Ruben; Wolfgang Wernsdorfer
Electrical control of nuclear spin qubits Quantum bits of information (qubits) that are based on spins of atomic nuclei are an attractive option for quantum information processing. It can sometimes be tricky to manipulate these qubits using magnetic fields directly. Thiele et al. developed a technique for electrically controlling a nuclear spin qubit in the single-molecule magnet TbPc2. When they hit the qubit with a microwave pulse, the microwaves electric field generated effective magnetic fields much larger than those available previously. Science, this issue p. 1135 The hyperfine interaction in a terbium bisphthalocyanine complex is modulated using electric fields to manipulate nuclear spin. Recent advances in addressing isolated nuclear spins have opened up a path toward using nuclear-spin–based quantum bits. Local magnetic fields are normally used to coherently manipulate the state of the nuclear spin; however, electrical manipulation would allow for fast switching and spatially confined spin control. Here, we propose and demonstrate coherent single nuclear spin manipulation using electric fields only. Because there is no direct coupling between the spin and the electric field, we make use of the hyperfine Stark effect as a magnetic field transducer at the atomic level. This quantum-mechanical process is present in all nuclear spin systems, such as phosphorus or bismuth atoms in silicon, and offers a general route toward the electrical control of nuclear-spin–based devices.
Nano Letters | 2011
Andrea Candini; Svetlana Klyatskaya; Mario Ruben; Wolfgang Wernsdorfer; Marco Affronte
The possibility to graft nano-objects directly on its surface makes graphene particularly appealing for device and sensing applications. Here we report the design and the realization of a novel device made by a graphene nanoconstriction decorated with TbPc(2) magnetic molecules (Pc = phthalocyananine), to electrically detect the magnetization reversal of the molecules in proximity with graphene. A magnetoconductivity signal as high as 20% is found for the spin reversal, revealing the uniaxial magnetic anisotropy of the TbPc(2) quantum magnets. These results depict the behavior of multiple-field-effect nanotransistors with sensitivity at the single-molecule level.
Nature Communications | 2012
Yi-Qi Zhang; Nenad Kepčija; Martin Kleinschrodt; Katharina Diller; Sybille Fischer; Anthoula C. Papageorgiou; Francesco Allegretti; Jonas Björk; Svetlana Klyatskaya; Florian Klappenberger; Mario Ruben; Johannes V. Barth
The covalent linking of acetylenes presents an important route for the fabrication of novel carbon-based scaffolds and two-dimensional materials distinct from graphene. To date few attempts have been reported to implement this strategy at well-defined interfaces or monolayer templates. Here we demonstrate through real space direct visualization and manipulation in combination with X-ray photoelectron spectroscopy and density functional theory calculations the Ag surface-mediated terminal alkyne C(sp)-H bond activation and concomitant homo-coupling in a process formally reminiscent of the classical Glaser-Hay type reaction. The alkyne homo-coupling takes place on the Ag(111) noble metal surface in ultrahigh vacuum under soft conditions in the absence of conventionally used transition metal catalysts and with volatile H(2) as the only by-product. With the employed multitopic ethynyl species, we demonstrate a hierarchic reaction pathway that affords discrete compounds or polymeric networks featuring a conjugated backbone. This presents a new approach towards on-surface covalent chemistry and the realization of two-dimensional carbon-rich or all-carbon polymers.
Journal of the American Chemical Society | 2008
Uta Schlickum; Régis Decker; Florian Klappenberger; Giorgio Zoppellaro; Svetlana Klyatskaya; W. Auwärter; Stefan Neppl; Klaus Kern; Harald Brune; Mario Ruben; Johannes V. Barth
Self-assembly techniques allow for the fabrication of highly organized architectures with atomic-level precision. Here, we report on molecular-level scanning tunneling microscopy observations demonstrating the supramolecular engineering of complex, regular, and long-range ordered periodic networks on a surface atomic lattice using simple linear molecular bricks. The length variation of the employed de novo synthesized linear dicarbonitrile polyphenyl molecules translates to distinct changes of the bonding motifs that lead to hierarchic order phenomena and unexpected changes of the surface tessellations. The achieved 2D organic networks range from a close-packed chevron pattern via a rhombic network to a hitherto unobserved supramolecular chiral kagomé lattice.
Journal of the American Chemical Society | 2010
Sebastian Stepanow; Jan Honolka; Pietro Gambardella; Lucia Vitali; Nasiba Abdurakhmanova; Tzu-Chun Tseng; Stephan Rauschenbach; Steven L. Tait; Violetta Sessi; Svetlana Klyatskaya; Mario Ruben; Klaus Kern
The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 mu(B), respectively.
Journal of the American Chemical Society | 2009
Dirk Kühne; Florian Klappenberger; Régis Decker; Uta Schlickum; Harald Brune; Svetlana Klyatskaya; Mario Ruben; Johannes V. Barth
A surface-supported open metal-organic nanomesh featuring a 24 nm(2) cavity size and extending to mum domains was fabricated by Co-directed assembly of para-hexaphenyl-dicarbonitrile linker molecules in two dimensions. The metallosupramolecular lattice is thermally robust and resides fully commensurate on the employed Ag(111) substrate as directly verified by high-resolution scanning tunneling microscopy observations.
Nature Communications | 2012
Jörg Schwöbel; Ying-Shuang Fu; Jens Brede; Andrew DiLullo; Germar Hoffmann; Svetlana Klyatskaya; Mario Ruben; R. Wiesendanger
A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces. It was demonstrated for the field of molecular electronics that the characterization of the molecule-metal-interface requires the precise knowledge of the atomic environment as well as the molecular orbitals being involved in electron transport. To extend the field of molecular electronics towards molecular spintronics, it is of utmost importance to resolve the spin character of molecular orbitals interacting with ferromagnetic leads. Here we present first direct real-space images of spin-split molecular orbitals of a single-molecule magnet adsorbed on a ferromagnetic nanostructure. Moreover, we are able to determine quantitatively the magnitude of the spin-splitting as well as the charge state of the adsorbed molecule.
Accounts of Chemical Research | 2015
Florian Klappenberger; Yi-Qi Zhang; Jonas Björk; Svetlana Klyatskaya; Mario Ruben; Johannes V. Barth
The covalent linking of acetylene compounds is an important synthetic tool to control carbon-carbon bond formation and has been extensively studied for more than a century. Notably, Glaser coupling and subsequently developed refined procedures present an important route for the fabrication of distinct carbon-based scaffolds incorporating units with both sp(2)- and sp-hybridizations, such as carbyne chains, or two-dimensional (2D) graphyne or graphdiyne networks. However, the realization of the envisioned regular low-dimensional compounds and nanoarchitectures poses formidable challenges when following conventional synthesis protocols in solution, which we briefly overview. Now, recent developments in on-surface synthesis establish novel means for the construction of tailored covalent nanostructures under ultrahigh vacuum conditions. Here we focus on the exploration of pathways utilizing interfacial synthesis with terminal alkynes toward the atomically precise fabrication of low-dimensional carbon-rich scaffolds and nanomaterials. We review direct, molecular-level investigations, mainly relying on scanning probe microscopy, providing atomistic insights into thermally activated reaction schemes, their special pathways and products. Using custom-made molecular units, the employed homocoupling, cyclotrimerization, cycloaddition, and radical cyclization processes indeed yield distinct compounds, extended oligomers or 2D networks. Detailed insights into surface interactions such as bonding sites or conformational adaptation, and specific reaction mechanisms, including hierarchic pathways, were gained by sophisticated density functional theory calculations, complemented by X-ray spectroscopy measurements. For the fabrication of regular nanostructures and architectures, it is moreover imperative to cope with spurious side reactions, frequently resulting in chemical diversity. Accordingly, we highlight measures for increasing chemo- and regioselectivity by smart precursor design, substrate templating, and external stimuli. The ensuing preorganization of functional groups and control of side reactions increases product yields markedly. Finally, the electronic band structures of selected cases of novel low-dimensional hydrocarbon materials accessible with the monomers employed to date are discussed with a specific focus on their differences to theoretically established graphyne- and graphdiyne-related scaffolds. The presented methodology and gained insights herald further advancements in the field, heading toward novel molecular compounds, low-dimensional nanostructures, and coherently reticulated polymeric layers, eventually presenting well-defined arrangements with specific carbon-carbon bond sequencing and electronic characteristics. The functional properties of these or other foreseeable scaffolds and architectures bear significant prospects for a wide range of applications, for example, in nanoelectronics, photonics, or carbon-based technologies.