Svetlana L. Belyanskaya
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana L. Belyanskaya.
Nature Chemical Biology | 2009
Matthew A. Clark; Raksha A. Acharya; Christopher C. Arico-Muendel; Svetlana L. Belyanskaya; Dennis R Benjamin; Neil R Carlson; Paolo A. Centrella; Cynthia H. Chiu; Steffen Phillip Creaser; John W. Cuozzo; Christopher P. Davie; Yun Ding; G. Joseph Franklin; Kurt D Franzen; Malcolm L. Gefter; Steven P Hale; Nils Jakob Vest Hansen; David I. Israel; Jinwei Jiang; Malcolm J. Kavarana; Michael Kelley; Christopher S. Kollmann; Fan Li; Kenneth Lind; Sibongile Mataruse; Patricia F Medeiros; Jeffrey A. Messer; Paul Myers; Heather O'Keefe; Matthew C Oliff
Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.
Journal of Medicinal Chemistry | 2013
Jeremy S. Disch; Ghotas Evindar; Cynthia H. Chiu; Charles A. Blum; Han Dai; Lei Jin; Kenneth Lind; Svetlana L. Belyanskaya; Jianghe Deng; Frank T. Coppo; Leah Aquilani; Todd L. Graybill; John W. Cuozzo; Siva Lavu; Cheney Mao; George P. Vlasuk; Robert B. Perni
The sirtuins SIRT1, SIRT2, and SIRT3 are NAD(+) dependent deacetylases that are considered potential targets for metabolic, inflammatory, oncologic, and neurodegenerative disorders. Encoded library technology (ELT) was used to affinity screen a 1.2 million heterocycle enriched library of DNA encoded small molecules, which identified pan-inhibitors of SIRT1/2/3 with nanomolar potency (e.g., 11c: IC50 = 3.6, 2.7, and 4.0 nM for SIRT1, SIRT2, and SIRT3, respectively). Subsequent SAR studies to improve physiochemical properties identified the potent drug like analogues 28 and 31. Crystallographic studies of 11c, 28, and 31 bound in the SIRT3 active site revealed that the common carboxamide binds in the nicotinamide C-pocket and the aliphatic portions of the inhibitors extend through the substrate channel, explaining the observable SAR. These pan SIRT1/2/3 inhibitors, representing a novel chemotype, are significantly more potent than currently available inhibitors, which makes them valuable tools for sirtuin research.
Journal of Medicinal Chemistry | 2012
Hongfeng Deng; Heather O’Keefe; Christopher P. Davie; Kenneth Lind; Raksha A. Acharya; G. Joseph Franklin; J. Larkin; Rosalie Matico; Michael Neeb; Monique M. Thompson; Thomas Lohr; Jeffrey W. Gross; Paolo A. Centrella; Gary O’Donovan; Katie L. (Sargent) Bedard; Kurt van Vloten; Sibongile Mataruse; Steven R. Skinner; Svetlana L. Belyanskaya; Tiffany Y. Carpenter; Todd W. Shearer; Matthew A. Clark; John W. Cuozzo; Christopher C. Arico-Muendel; Barry Morgan
The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1β/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.
Prostaglandins & Other Lipid Mediators | 2013
Patricia L. Podolin; Brian Bolognese; Joseph F. Foley; Edward Long; Brian Peck; Sandra Umbrecht; Xiaojun Zhang; Penny Zhu; Benjamin Schwartz; Wensheng Xie; Chad Quinn; Hongwei Qi; Sharon Sweitzer; Stephanie Chen; Marc Galop; Yun Ding; Svetlana L. Belyanskaya; David I. Israel; Barry Morgan; David J. Behm; Joseph P. Marino; Edit Kurali; Mary S. Barnette; Ruth J. Mayer; Catherine L. Booth-Genthe; James F. Callahan
Soluble epoxide hydrolase (sEH, EPHX2) metabolizes eicosanoid epoxides, including epoxyeicosatrienoic acids (EETs) to the corresponding dihydroxyeicosatrienoic acids (DHETs), and leukotoxin (LTX) to leukotoxin diol (LTX diol). EETs, endothelium-derived hyperpolarizing factors, exhibit potentially beneficial properties, including anti-inflammatory effects and vasodilation. A novel, potent, selective inhibitor of recombinant human, rat and mouse sEH, GSK2256294A, exhibited potent cell-based activity, a concentration-dependent inhibition of the conversion of 14,15-EET to 14,15-DHET in human, rat and mouse whole blood in vitro, and a dose-dependent increase in the LTX/LTX diol ratio in rat plasma following oral administration. Mice receiving 10 days of cigarette smoke exposure concomitant with oral administration of GSK2256294A exhibited significant, dose-dependent reductions in pulmonary leukocytes and keratinocyte chemoattractant (KC, CXCL1) levels. Mice receiving oral administration of GSK2256294A following 10 days of cigarette smoke exposure exhibited significant reductions in pulmonary leukocytes compared to vehicle-treated mice. These data indicate that GSK2256294A attenuates cigarette smoke-induced inflammation by both inhibiting its initiation and/or maintenance and promoting its resolution. Collectively, these data indicate that GSK2256294A would be an appropriate agent to evaluate the role of sEH in clinical studies, for example in diseases where cigarette smoke is a risk factor, such as chronic obstructive pulmonary disease (COPD) and cardiovascular disease.
Bioorganic & Medicinal Chemistry Letters | 2013
Reema K. Thalji; Jeff J. McAtee; Svetlana L. Belyanskaya; Martin Brandt; Gregory D. Brown; Melissa H. Costell; Yun Ding; Jason W. Dodson; Steve H. Eisennagel; Rusty E. Fries; Jeffrey W. Gross; Mark R. Harpel; Dennis A. Holt; David I. Israel; Larry J. Jolivette; Daniel J. Krosky; Hu Li; Quinn Lu; Tracy Mandichak; Theresa J. Roethke; Christine G. Schnackenberg; Benjamin Schwartz; Lisa M. Shewchuk; Wensheng Xie; David J. Behm; Stephen A. Douglas; Ami L. Shaw; Joseph P. Marino
1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.
Bioorganic & Medicinal Chemistry Letters | 2012
Gabriella Gentile; Giancarlo Merlo; Alfonso Pozzan; Giovanni Bernasconi; Benjamin D. Bax; Paul Bamborough; Angela Bridges; Paul S. Carter; Margarete Neu; Gang Yao; Caroline Brough; Geoffrey J. Cutler; Aaron Coffin; Svetlana L. Belyanskaya
5-Aryl-4-carboxamide-1,3-oxazoles are a novel, potent and selective series of GSK-3 inhibitors. The optimization of the series to yield compounds with cell activity and brain permeability is described.
Analytical Chemistry | 2015
Jiayin Bao; Svetlana M. Krylova; Leonid T. Cherney; Robert L. Hale; Svetlana L. Belyanskaya; Cynthia H. Chiu; Christopher C. Arico-Muendel; Sergey N. Krylov
Selection of protein binders from highly diverse combinatorial libraries of DNA-encoded small molecules is a highly promising approach for discovery of small-molecule drug leads. Methods of kinetic capillary electrophoresis provide the high efficiency of partitioning required for such selection but require the knowledge of electrophoretic mobility of the protein-ligand complex. Here we present a theoretical approach for an accurate estimate of the electrophoretic mobility of such complexes. The model is based on a theory of the thin double layer and corresponding expressions used for the mobilities of a rod-like short oligonucleotide and a sphere-like globular protein. The model uses empirical values of mobilities of free protein, free ligand, and electroosmotic flow. The model was tested with a streptavidin-dsDNA complex linked through biotin (small molecule). The deviation of the prediction from the experimental mobility did not exceed 4%, thus confirming that not only is the model adequate but it is also accurate. This model will facilitate reliable use of KCE methods for selection of drug leads from libraries of DNA-encoded small molecules.
ACS Medicinal Chemistry Letters | 2016
Hongfeng Deng; Jingye Zhou; Flora Sundersingh; Jeffrey A. Messer; Donald O. Somers; Myriam Ajakane; Christopher C. Arico-Muendel; Arthur Beljean; Svetlana L. Belyanskaya; Ryan P. Bingham; Emily Blazensky; Anne-Bénédicte Boullay; Eric Boursier; Jing Chai; Paul S. Carter; Chun-wa Chung; Alain Claude-Marie Daugan; Yun Ding; Kenny Herry; Clare I. Hobbs; Eric Humphries; Christopher S. Kollmann; Van Loc Nguyen; Edwige Nicodeme; Sarah E. Smith; Nerina Dodic; Nicolas Ancellin
To identify BCATm inhibitors suitable for in vivo study, Encoded Library Technology (ELT) was used to affinity screen a 117 million member benzimidazole based DNA encoded library, which identified an inhibitor series with both biochemical and cellular activities. Subsequent SAR studies led to the discovery of a highly potent and selective compound, 1-(3-(5-bromothiophene-2-carboxamido)cyclohexyl)-N-methyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole-5-carboxamide (8b) with much improved PK properties. X-ray structure revealed that 8b binds to the active site of BACTm in a unique mode via multiple H-bond and van der Waals interactions. After oral administration, 8b raised mouse blood levels of all three branched chain amino acids as a consequence of BCATm inhibition.
ChemBioChem | 2017
Svetlana L. Belyanskaya; Yun Ding; James F. Callahan; Aili L. Lazaar; David I. Israel
DNA‐encoded chemical library technology was developed with the vision of its becoming a transformational platform for drug discovery. The hope was that a new paradigm for the discovery of low‐molecular‐weight drugs would be enabled by combining the vast molecular diversity achievable with combinatorial chemistry, the information‐encoding attributes of DNA, the power of molecular biology, and a streamlined selection‐based discovery process. Here, we describe the discovery and early clinical development of GSK2256294, an inhibitor of soluble epoxide hydrolase (sEH, EPHX2), by using encoded‐library technology (ELT). GSK2256294 is an orally bioavailable, potent and selective inhibitor of sEH that has a long half life and produced no serious adverse events in a first‐time‐in‐human clinical study. To our knowledge, GSK2256294 is the first molecule discovered from this technology to enter human clinical testing and represents a realization of the vision that DNA‐encoded chemical library technology can efficiently yield molecules with favorable properties that can be readily progressed into high‐quality drugs.
Analytical Chemistry | 2016
Jiayin Bao; Svetlana M. Krylova; Leonid T. Cherney; Robert L. Hale; Svetlana L. Belyanskaya; Cynthia H. Chiu; Alex Shaginian; Christopher C. Arico-Muendel; Sergey N. Krylov
Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs.