Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetlana Stevanovic is active.

Publication


Featured researches published by Svetlana Stevanovic.


Science of The Total Environment | 2017

On-road vehicle emissions and their control in China: A review and outlook.

Ye Wu; Shaojun Zhang; Jiming Hao; Huan Liu; Xiaomeng Wu; Jingnan Hu; Michael P. Walsh; Timothy J. Wallington; K. Max Zhang; Svetlana Stevanovic

The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NOX and PM2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions to control the future light-duty passenger vehicle population growth and use, and introduce alternative fuels and new energy vehicles, the China total vehicle emissions of HC, CO, NOX and PM2.5 in 2030 could be reduced by approximately 57%, 71%, 67% and 84%, respectively, (the PC[2] scenario) relative to 2013. This paper provides detailed policy roadmaps and technical options related to these future emission reductions for governmental stakeholders.


Environmental Science & Technology | 2011

Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock.

Nicholas C. Surawski; Branka Miljevic; Godwin A. Ayoko; Sohair Elbagir; Svetlana Stevanovic; Kathryn E. Fairfull-Smith; Steven E. Bottle; Zoran Ristovski

This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.


Environmental Science & Technology | 2013

Influence of oxygenated organic aerosols (OOAs) on the oxidative potential of diesel and biodiesel particulate matter.

Svetlana Stevanovic; Branka Miljevic; Nicholas C. Surawski; Kathryn E. Fairfull-Smith; Steven E. Bottle; Richard J. Brown; Zoran Ristovski

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuels constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact time of flight aerosol mass spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore, the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases, shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.


SAE International Journal of Fuels and Lubricants | 2013

Engine Performance Characteristics for Biodiesels of Different Degrees of Saturation and Carbon Chain Lengths

Phuong X. Pham; Timothy A. Bodisco; Svetlana Stevanovic; Mostafizur Rahman; Hao Wang; Zoran Ristovski; Richard J. Brown; Assaad R. Masri

This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine. The peak in-cylinder pressure is lower for the biodiesels that produce a smaller number of emitted particles, compared to fossil diesel, but the concentration of the reactive oxygen species is significantly higher because of oxygen in the fuels. The differences in the physicochemical properties amongst the biofuels and the fossil diesel significantly affect the engine combustion and emission characteristics. Saturated short chain length fatty acid methyl esters are found to enhance combustion efficiency, reduce NOx and particle number concentration, but results in high levels of fuel consumption.


Aerosol Science and Technology | 2014

To Sonicate or Not to Sonicate PM Filters: Reactive Oxygen Species Generation Upon Ultrasonic Irradiation

Branka Miljevic; F. Hedayat; Svetlana Stevanovic; Kathryn E. Fairfull-Smith; Steven E. Bottle; Zoran Ristovski

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10–60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localized temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapors), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognized as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect reactive oxygen species (ROS) in PM. Copyright 2014 American Association for Aerosol Research


Science of The Total Environment | 2017

Role of Chinese cooking emissions on ambient air quality and human health

Lina Wang; Zhiyuan Xiang; Svetlana Stevanovic; Zoran Ristovski; Farhad Salimi; Jun Gao; Hongli Wang; Li Li

Chinese-style cooking often involves volatilization of oils which can potentially produce a large number of pollutants, which have adverse impact on environment and human health. Therefore, we have reviewed 75 published studies associated with research topic among Mainland China, Hong Kong and Taiwan, involving studies on the roles of food ingredients and oil type, cooking style impacting on generated pollutants, and human health. The highest concentration occurred including: 1) when peat, wood, and raw coal were used in stoves; 2) olive oil was adopted; 3) cooking with high temperatures; and 4) without cleaning technology. We conclude that PM concentrations for cooking emissions were between 0.14 and 24.46mg/cm3. VOC concentrations varied from 0.35 to 3.41mg/m3. Barbeque produced the greatest mass concentrations compared to Sichuan cuisine, canteen and other restaurants. The PAHs concentration emitted from the exhaust stacks, dining area and kitchen ranged from 0.0175μg/m3 to 83μg/m3. The largest amount of gaseous pollutants emitted was recorded during incomplete combustion of fuel or when a low combustion efficiency (CO2/ (CO+CO2)<0.5) was observed. The variation range was 6.27-228.89mg/m3, 0.16-0.80mg/m3, 0.69-4.33mg/m3, 0.70-21.70mg/m3 for CO, CO2, NO2 and SO2 respectively. In regards to the toxicity and exposure, current findings concluded that both the dose and exposure time are significant factors to be considered. Scientific research in this area has been mainly driven by comparison among emissions from various ingredients and cooking techniques. There is still a need for more comprehensive studies to fully characterise the cooking emissions including their physical and chemical transformations which is crucial for accurate estimation of their impacts on the environment and human health.


Science of The Total Environment | 2016

Influence of oxygen content of the certain types of biodiesels on particulate oxidative potential

F. Hedayat; Svetlana Stevanovic; Andelija Milic; Branka Miljevic; Md. Nurun Nabi; Ali Zare; Steven E. Bottle; Richard J. Brown; Zoran Ristovski

Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.


Environmental Science & Technology | 2014

Influence of fuel molecular structure on the volatility and oxidative potential of biodiesel particulate matter.

Ali Mohammad Pourkhesalian; Svetlana Stevanovic; Farhad Salimi; M.M. Rahman; Hang Wang; Phuong X. Pham; Steven E. Bottle; Assaad R. Masri; Richard J. Brown; Zoran Ristovski

We have studied the effect of chemical composition of biodiesel fuel on the physical (volatility) and chemical (reactive oxygenated species concentration) properties of nano particles emitted from a modern common-rail diesel engine. Particle emissions from the combustion of four biodiesels with controlled chemical compositions and different varying unsaturation degrees and carbon-chain lengths, together with a commercial diesel, were tested and compared in terms of volatility of particles and the amount of reactive oxygenated species carried by particles. Different blends of biodiesel and petro diesel were tested at several engine loads and speeds. We have observed that more saturated fuels with shorter carbon chain lengths result in lower particle mass but produce particles that are more volatile and also have higher levels of Reactive Oxygen Species. This highlights the importance of taking into account metrics that are relevant from the health effects point of view when assessing emissions from new fuel types.


Environmental Science: Processes & Impacts | 2015

Particle emissions from microalgae biodiesel combustion and their relative oxidative potential

M.M. Rahman; Svetlana Stevanovic; Muhammad Aminul Islam; Kirsten Heimann; Md. Nurun Nabi; George Thomas; Bo Feng; Richard J. Brown; Zoran Ristovski

Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition.


Journal of Environmental and Analytical Toxicology | 2015

Removal of Organic Content from Diesel Exhaust Particles Alters Cellular Responses of Primary Human Bronchial Epithelial Cells Cultured at an Air-Liquid Interface

Annalicia Vaughan; Svetlana Stevanovic; L. Morrison; Ali Mohammad Pourkhesalian; Mostafizur Rahman; Ali Zare; Branka Miljevic; Felicia Goh; ana Relan; Rayleen Bowman; Kwun M. Fong; Steven E. Bottle; Zoran Ristovski; Ian A. Yang

Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.

Collaboration


Dive into the Svetlana Stevanovic's collaboration.

Top Co-Authors

Avatar

Zoran Ristovski

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Branka Miljevic

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard J. Brown

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven E. Bottle

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ali Mohammad Pourkhesalian

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Yang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kwun M. Fong

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Rayleen Bowman

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge