Svetlana V. Cherepanova
Novosibirsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana V. Cherepanova.
Physical Chemistry Chemical Physics | 2007
Alexei N. Gavrilov; Elena R. Savinova; Pavel A. Simonov; V. I. Zaikovskii; Svetlana V. Cherepanova; Galina A. Tsirlina; Valentin N. Parmon
PtRu (1:1) catalysts supported on low surface area carbon of the Sibunit family (S(BET) = 72 m(2) g(-1)) with a metal percentage ranging from 5 to 60% are prepared and tested in a CO monolayer and for methanol oxidation in H(2)SO(4) electrolyte. At low metal percentage small (<2 nm) alloy nanoparticles, uniformly distributed on the carbon surface, are formed. As the amount of metal per unit surface area of carbon increases, particles start coalescing and form first quasi two-dimensional, and then three-dimensional metal nanostructures. This results in a strong enhancement of specific catalytic activity in methanol oxidation and a decrease of the overpotential for CO monolayer oxidation. It is suggested that intergrain boundaries connecting crystalline domains in nanostructured PtRu catalysts produced at high metal-on-carbon loadings provide active sites for electrocatalytic processes.
Chemcatchem | 2015
Ekaterina A. Kozlova; Anna Yu. Kurenkova; Victoria S. Semeykina; Ekaterina V. Parkhomchuk; Svetlana V. Cherepanova; Evgeny Yu. Gerasimov; Andrey A. Saraev; Vasily V. Kaichev; Valentin N. Parmon
Multiphase photocatalysts Cd1−xZnxS/TiO2 were synthesized through the deposition of solid solutions of cadmium and zinc sulfides on the surface of titania samples with different porous structures, including a 3D‐ordered meso/macroporous structure. The photocatalysts were characterized by a wide range of experimental techniques: X‐ray diffraction, high‐resolution transmission electron microscopy combined with energy‐dispersive X‐ray spectroscopy, N2 adsorption at 77 K, X‐ray photoelectron spectroscopy, and UV/VIS spectroscopy. The photocatalytic activity was tested in a batch reactor for the H2 evolution reaction from aqueous solutions of Na2S/Na2SO3 under visible‐light irradiation (λ=450 nm). The highest achieved photocatalytic activity was 1.8 mmol H2 per gram of photocatalyst per hour. The regular porous structure of titania was demonstrated to enhance the photocatalytic activity and stability of Cd0.4Zn0.6S/TiO2 samples.
Advanced Materials Research | 2013
Andrey S. Andreev; Serguey F. Tikhov; Aleksey N. Salanov; Svetlana V. Cherepanova; Olga B. Lapina; Vasiliy A. Bolotov; Yuriy Yu. Tanashev; Jean Baptiste d’Espinose de Lacaillerie; V. A. Sadykov
Porous ceramometal Al2O3/CoAlO/CoAl was studied by set of physicochemical techniques such as XRD, SEM, internal field 59Co and 27Al MAS NMR, and porosity measurements. They revealed the cermet containing three parts. First, cobalt-free large porous alumina particles which surrounded by the second oxide part representing spinel CoxAl3-xO4 (x=1,2,3) oxides. And third, oxygen-free metallic part consists of cobalt metal particles covered by Co-Al oxide protecting the metallic part from oxidation. Porosity measurements ascertained high porosity (60%) and good SSA (122 m2/g). Also the enhanced adsorption of microwaves due to metallic particles randomly distributed in oxides was found.
Fullerenes Nanotubes and Carbon Nanostructures | 2016
Arina N. Suboch; Svetlana V. Cherepanova; Lidiya S. Kibis; Dmitry A. Svintsitskiy; O. A. Stonkus; A. I. Boronin; V. V. Chesnokov; A. I. Romanenko; Z. R. Ismagilov; Olga Yu. Podyacheva
ABSTRACT A superstructural peak at ∼12° in X-ray diffraction patterns of nitrogen-doped carbon nanotubes compared to the undoped carbon nanotubes was observed and assigned to the formation of spatially ordered defects. The simulation of the N-CNT structure using the graphitic g-C3N4 phase and turbostratic ordering made it possible to propose a new model of the spatially ordered defects in the N-CNT layer, which consist of clusters of carbon vacancies and pyridine-like nitrogen. A correlation between this type of defects and electrical conductivity of the N-CNTs is defined.
CrystEngComm | 2016
Svetlana V. Cherepanova; O.A. Bulavchenko; Evgeny Yu. Gerasimov; Sergey V. Tsybulya
Spinel-like Mn1.5Al1.5O4 is an unstable compound whose decomposition is induced by partial oxidation of Mn2+ ions in the temperature range of 300–800 °C in air. According to XRD, two spinel-like phases, Mn0.4Al2.4O4 and Mn2.8Al0.2O4, are formed during both cooling and heating of Mn1.5Al1.5O4. In this paper, we have studied microstructural changes of Mn1.5Al1.5O4 to understand its decomposition mechanism. During heating, low-temperature oxidation takes place and decomposition proceeds via a nucleation and growth mechanism. As a result slightly Al-doped β-Mn3O4 nanoparticles are formed on the surface of the parent spinel particles. On the contrary, cooling leads to high-temperature oxidation that results preferably in spinodal decomposition and formation of alternating Mn- and Al-rich lamellas of nanosized thickness. The present study provides a fundamental reference for the nanostructure design of a Mn–Al–O system and probably some other ones subjected to oxidative decomposition.
Catalysis for Sustainable Energy | 2016
Tatyana V. Larina; Svetlana V. Cherepanova; Nina A. Rudina; Boris A. Kolesov; A. N. Zagoruiko
Abstract This work is focused on the characterization of a novel vanadium pentoxide catalysts on a glass-fiber support. The catalyst support consists of a non-porous glass-fiber fabric covered with an additional external surface layer of porous secondary support of SiO2. The vanadia active component is synthesized from vanadyl oxalate precursor by means of an impulse surface thermo-synthesis method. Such catalysts demonstrate high activity and appropriate selectivity in the reaction of H2S oxidation by oxygen into sulfur in the practically important temperature range below 200°C. According to the characterization data, the freshly prepared vanadia catalyst partially consists of mostly the amorphous and badly ordered vanadia with some part of the wellcrystallized V2O5 phase. Under the reaction conditions the main part of vanadia in the catalyst remains in the amorphous V2O5 form, while the less part becomes reduces into of VO2 and other vanadium oxides (such as VO, V2O3 V3O7 and V4O9). Most probably, the crystallized V2O5 in course of reaction is responsible for the deep oxidation of hydrogen sulphide into SO2, while the lower vanadium oxides promote the selective H2S oxidation into elemental sulfur.
Journal of Sol-Gel Science and Technology | 2017
Aleksey A. Vedyagin; Ilya V. Mishakov; Timofey M. Karnaukhov; E. F. Krivoshapkina; Ekaterina V. Ilyina; Tatyana A. Maksimova; Svetlana V. Cherepanova; P. V. Krivoshapkin
A series of two-component MOx–MgO systems, where M is Cu, Ni, Co, Fe, Mo or W, was synthesized by sol–gel technique. Aqueous solution of inorganic salt-precursor was used as a hydrolyzing agent. Initial xerogels and final oxides were characterized using X-ray diffraction analysis, scanning electron microscopy and low-temperature nitrogen adsorption. Decomposition of xerogels was studied by differential thermal analysis. According to X-ray diffraction analysis, all xerogel samples are characterized with turbostratic structures regardless of nature of the second component. At the same time, presence of inorganic salt in magnesium hydroxide matrix shifts the temperature of decomposition of latter towards lower values. Structural and textural characteristics of MgO-based oxide systems were found to be strongly affected by the additive. Formation of joint phase was observed in the case of cobalt oxide. In most cases, additives turned out to be even distributed in the bulk of MgO, except for WO3. This oxide formed large agglomerates because of low solubility of precursor.Graphical Abstract
Catalysis for Sustainable Energy | 2017
Maxim V. Popov; Sergey Zazhigalov; Tatyana V. Larina; Svetlana V. Cherepanova; Alexander G. Bannov; Sergey Lopatin; A. N. Zagoruiko
Abstract The new multi-layered composite was manufactured by deposition of the carbon nanofibers (CNF) at the surface of the glass-fiber fabric, which is pre-modified by application of additional external layers of NiO and porous silica. Carbonization of synthesized catalytic template was performed at 450 °C in propanebutane media at ambient pressure. CNF was deposited in amount of ~130% of initial template mass or 65 g per g of nickel, the specific surface area of the material is ~100 m2/g. The synthesized material has high mechanical strength, high hydrophobicity and strong bonding between CNF and glass-fiber support. The synthesis method is technologically simple, inexpensive and easily scalable. It is possible to manufacture such material in various solid shapes, using the flexibility of the primary glass-fiber support; in particular, it may be used for production of the mechanically self-sustainable catalytic cartridges with required shape and internal geometry using no additional structuring elements.
Central European Journal of Chemistry | 2017
A. N. Shmakov; Svetlana V. Cherepanova; Dmitrii A. Zyuzin; Yulia E. Fedorova; Ivan A. Bobrikov; Anne-Cécile Roger; Andrzej Adamski; V. A. Sadykov
Abstract The real/atomic structure of single phase homogeneous nanocrystalline Ce0.5Zr0.5O2±δ oxides prepared by a modified Pechini route and Ni-loaded catalysts of methane dry reforming on their bases was studied by a combination of neutron diffraction, synchrotron X-ray diffraction, total X-ray scattering and X-ray absorption spectroscopy. The effects of sintering temperature and pretreatment in H2 were elucidated. The structure of the mixed oxides corresponds to a tetragonal space group indicating a homogeneous distribution of Ce and Zr cations in the lattice. A pronounced disordering of the oxygen sublattice was revealed by neutron diffraction, supposedly due to incorporation of water into the structure when in contact with air promoted by the generation of anion vacancies in the lattice after reduction or calcination at high temperatures. However, such disordering has not resulted in any occupation of the oxygen interstitial positions in the bulk of the nanodomains.
Central European Journal of Chemistry | 2017
Marina Yu. Smirnova; Aleksei S. Bobin; S. Pavlova; Arcady V. Ishchenko; Aleksandra V. Selivanova; Vasilii V. Kaichev; Svetlana V. Cherepanova; Tamara Krieger; Marina Arapova; Anne-Cécile Roger; Andrzej Adamski; V. A. Sadykov
Abstract Ce0.5Zr0.5O2 mixed oxides were prepared in a flow reactor in supercritical isopropanol with acetylacetone as a complexing agent. Variation of the nature of the Zr salt and the temperature of synthesis affected the phase composition, morphology and specific surface area of oxides. X-ray diffraction and Raman spectroscopy studies revealed formation of metastable t” and t’ phases. Oxides are comprised of agglomerates with sizes depending on the synthesis parameters. Loading NiO decreases the specific surface area without affecting X-ray particle sizes of supports. Such sintering was the most pronounced for a support with the highest specific surface area, which resulted in the lowest surface content of Ni as estimated by X-ray photoelectron spectroscopy and in the formation of flattened NiO particles partially embedded into the support. The catalytic activity and stability of these samples in the dry reforming of methane were determined by the surface concentration of Ni and the morphology of its particle controlled by the metal-support interaction, which also depends on the type of catalyst pretreatment. Samples based on ceria-zirconia oxides prepared under these conditions provide a higher specific catalytic activity as compared with the traditional Pechini route, which makes them promising for the practical application.