Svetlana V. Eliseeva
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana V. Eliseeva.
Journal of Rare Earths | 2010
Jean-Claude G. Bünzli; Svetlana V. Eliseeva
Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) luminescence is exploited in any modern fiber-optic telecommunication network. In this feature article, we first summarize the whereabouts underlying the design of highly luminescent NIR molecular edifices and materials. We then focus on describing the main trends in three applications related to this spectral range: telecommunications, biosciences, and solar energy conversion. In telecommunications, efforts concentrate presently on getting easily processable polymer-based waveguide amplifiers. Upconversion nanophosphors emitting in the visible after NIR excitation are now ubiquitous in many bioanalyses while their application to bio-imaging is still in its early stages; however, highly sensitive NIR-NIR systems start to be at hand for both in vitro and in vivo imaging, as well as dual probes combining magnetic resonance and optical imaging. Finally, both silicon-based and dye-sensitized solar cells benefit from the downconversion and upconversion capabilities of lanthanide ions to harvest UV and NIR solar light and to boost the overall quantum efficiency of these next-generation devices.
Chemical Science | 2013
Jean-Claude G. Bünzli; Svetlana V. Eliseeva
The enthralling properties of lanthanide luminescence have propelled luminescent probes, tags and materials based on these elements to the forefront of science and technology. In this minireview, attention is focused on the latest innovations and on less-known aspects of this field. Exciting new developments in bioimaging, therapy, drug delivery, security tags, luminescent sensors, and solar energy conversion are highlighted.
New Journal of Chemistry | 2011
Svetlana V. Eliseeva; Jean-Claude G. Bünzli
In recent decades, rare earths have become vital to a wealth of advanced materials and technologies including catalysts, alloys, magnets, optics and lasers, rechargeable hydride batteries, electronics, economical lighting, wind- and solar-energy conversion, bio-analyses and imaging. In this perspective article we give a broad overview of rare earth resources and uses first and then of selected applications in dedicated fields such as telecommunications, lasers, photovoltaics (solar-energy conversion), lighting (fluorescent lamps and OLEDs), luminescent probes for bio-analyses and bio-imaging, as well as magnetism and magnetic refrigeration.
Lanthanide Luminescence | 2010
Jean-Claude G. Bünzli; Svetlana V. Eliseeva
The fascination for lanthanide optical spectroscopy dates back to the 1880s when renowned scientists such as Sir William Crookes, LeCoq de Boisbaudran, Eugene Demarcay or, later, Georges Urbain were using luminescence as an analytical tool to test the purity of their crystallizations and to identify potential new elements. The richness and complexity of lanthanide optical spectra are reflected in an article published in 1937 by J.H. van Vleck: The Puzzle of Rare Earth Spectra in Solids. After this analytical and exploratory period, lanthanide unique optical properties were taken advantage of in optical glasses, filters, and lasers. In the mid-1970s, E. Soini and I. Hemmila proposed lanthanide luminescent probes for time-resolved immunoassays (Soini and Hemmila in Clin Chem 25:353–361, 1979) and this has been the starting point of the present numerous bio-applications based on optical properties of lanthanides. In this chapter, we first briefly outline the principles underlying the simplest models used for describing the electronic structure and spectroscopic properties of trivalent lanthanide ions LnIII (4f n ) with special emphasis on luminescence. Since the book is intended for a broad readership within the sciences, we start from scratch defining all quantities used, but we stay at a descriptive level, leaving out detailed mathematical developments. For the latter, the reader is referred to references Liu and Jacquier, Spectroscopic properties of rare earths in optical materials. Tsinghua University Press & Springer, Beijing & Heidelberg, 2005 and Gorller-Walrand and Binnemans, Rationalization of crystal field parameters. In: Gschneidner, Eyring (eds) Handbook on the physics and chemistry of rare earths, vol 23. Elsevier BV, Amsterdam, Ch 155, 1996. The second part of the chapter is devoted to practical aspects of lanthanide luminescent probes, both from the point of view of their design and of their potential utility.
Angewandte Chemie | 2015
Antigoni Douvali; Athanassios C. Tsipis; Svetlana V. Eliseeva; Stéphane Petoud; Giannis S. Papaefstathiou; Christos D. Malliakas; Ioannis T. Papadas; Gerasimos S. Armatas; I. Margiolaki; Mercouri G. Kanatzidis; Theodore Lazarides; Manolis J. Manos
The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg(2+) metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.
Inorganic Chemistry | 2010
Svetlana V. Eliseeva; Dmitry N. Pleshkov; Konstantin A. Lyssenko; Leonid S. Lepnev; Jean-Claude G. Bünzli; N. P. Kuz'mina
The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color-tunable microcrystalline materials from red to green. Finally, the crystalline samples exhibit strong triboluminescence, which could be useful in the design of pressure and/or damage detection probes.
Journal of the American Chemical Society | 2014
Evan R. Trivedi; Svetlana V. Eliseeva; Joseph Jankolovits; Marilyn M. Olmstead; Stéphane Petoud; Vincent L. Pecoraro
Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLnL = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.
Journal of Physical Chemistry A | 2008
Svetlana V. Eliseeva; O. V. Kotova; Frédéric Gumy; Sergey N. Semenov; Vadim G. Kessler; Leonid S. Lepnev; Jean-Claude G. Bünzli; N. P. Kuz'mina
Two types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate. In [Tb2(hfa)6(mu2-O(CH2)2NHMe2)2], eight-coordinate TbIII ions adopt distorted square antiprismatic coordination environments and are O-bridged by two zwitterionic N,N-dimethylaminoethanol ligands with a Tb1...Tb2 separation of 3.684(1) A. In [Tb(thd)2(mu2,eta2-O(CH2)2NMe2)]2, the N,N-dimethylaminoethanol acts as chelating-bridging O,N-donor anion and the TbIII ions are seven-coordinate; the Tb1...Tb1A separation amounts to 3.735(2) A within centrosymmetric dimers. The dimeric complexes are thermally stable up to 180 degrees C, as shown by thermogravimetric analysis, and their volatility is sufficient for quantitative sublimation under reduced pressure. The EuIII and TbIII dimers display metal-centered luminescence, particularly [Eu2(hfa)6(O(CH2)2NHMe2)2] (quantum yield Q(L)Ln = 58%) and [Tb(thd)2(O(CH2)2NMe2)]2 (32%). Consideration of energy migration paths within the dimers, based on the study of both pure and EuIII- or TbIII-doped (0.01-0.1 mol %) LuIII analogues, leads to the conclusion that both the beta-diketone and N,N-dimethylaminoethanol ligands contribute significantly to the sensitization process of the EuIII luminescence. The ancillary ligand increases considerably the luminescence of [Eu2(hfa)6(O(CH2)2NHMe2)2], compared to [Ln(hfa)3(H2O)2], through the formation of intra-ligand states while it is detrimental to TbIII luminescence in both beta-diketonates. Thin films of the most luminescent compound [Eu2(hfa)6(O(CH2)2NHMe2)2] obtained by vacuum sublimation display photophysical properties analogous to those of the solid-state sample, thus opening perspectives for applications in electroluminescent devices.
Inorganic Chemistry | 2010
Nail M. Shavaleev; Svetlana V. Eliseeva; Rosario Scopelliti; Jean-Claude G. Bünzli
Sterically hindered N-aryl-benzimidazole pyridine-2-carboxylic acids (aryl = phenyl, 4-biphenyl, 2-naphthyl) readily form homoleptic, neutral, nine-coordinate europium complexes which display efficient sensitized luminescence in solid state and in dichloromethane solution with quantum yields reaching 59% and have monoexponential and nearly temperature-independent lifetimes as long as 2.7 ms. The ligand-centered absorption band with a maximum at 321-342 nm and intensity (50-56) x 10(3) M(-1)cm(-1) ensures efficient harvesting of excitation light by the complexes. Variation of N-aryl chromophore enhances the ligand absorption at 250-350 nm without changing its triplet state energy which amounts to (19.2-21.3) x 10(3) cm(-1). Photophysical properties of europium complexes benefit from adequate protection of the metal by the ligands against non-radiative deactivation and efficient ligand-to-metal energy transfer exceeding 70%. A correlation is observed between the sensitized luminescence quantum yields of europium and the ligand triplet state energy; in certain cases it points to the presence of a second-sphere quenching of Eu(III) by co-crystallized water in the solid state.
Chemistry: A European Journal | 2009
Nail M. Shavaleev; Svetlana V. Eliseeva; Rosario Scopelliti; Jean-Claude G. Bünzli
A series of tridentate benzimidazole-substituted pyridine-2-carboxylic acids have been prepared with a halogen, methyl or alkoxy group in the 6-position of the benzimidazole ring, which additionally contains a solubilising N-alkyl chain. The ligands form neutral homoleptic nine-coordinate lanthanum, europium and terbium complexes as established from X-ray crystallographic analysis of eight structures. The coordination polyhedron around the lanthanide ion is close to a tricapped trigonal prism with ligands arranged in an up-up-down fashion. The coordinated ligands serve as light-harvesting chromophores in the complexes with absorption maxima in the range 321-341 nm (epsilon=(4.9-6.0)x10(4) M(-1) cm(-1)) and triplet-state energies between 21 300 and 18 800 cm(-1); the largest redshifts occur for bromine and electron-donor alkoxy substituents. The ligands efficiently sensitise europium luminescence with overall quantum yields (Q(L)(Eu)) and observed lifetimes (tau(obs)) reaching 71 % and 3.00 ms, respectively, in the solid state and 52 % and 2.81 ms, respectively, in CH(2)Cl(2) at room temperature. The radiative lifetimes of the Eu((5)D(0)) level amount to tau(rad)=3.6-4.6 ms and the sensitisation efficiency eta(sens)=Q(L)(Eu)(tau(rad)/tau(obs)) is close to unity for most of the complexes in the solid state and equal to approximately 80 % in solution. The photophysical parameters of the complexes correlate with the triplet energy of the ligands, which in turn is determined by the nature of the benzimidazole substituent. Facile modification of the ligands makes them promising for the development of brightly emissive europium-containing materials.