Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetoslav Dimitrov Todorov is active.

Publication


Featured researches published by Svetoslav Dimitrov Todorov.


Applied Biochemistry and Biotechnology | 2016

In Vitro Evaluation of Bacteriocins Activity Against Listeria monocytogenes Biofilm Formation.

Anderson Carlos Camargo; Otávio Almeida Lino de Paula; Svetoslav Dimitrov Todorov; Luís Augusto Nero

The present study aimed to assess the activity of cell-free supernatant (CFS) containing bacteriocins on the formation and maintenance of biofilms developed by Listeria monocytogenes, and the associated effect of bacteriocins and ethylene-diamine-tetra-acetic acid (EDTA) on the formed biofilm. CFS from 9 lactic acid bacteria (LAB) strains was tested for inhibitory activity against 85 L. monocytogenes isolates and 21 LAB strains. Then, 12 L. monocytogenes strains were selected based on genetic profiles and sensitivity to CFS and were subjected to an in vitro assay to assess biofilm formation in microtiter plates, considering different culture media and incubation conditions. Based on these results, 6 L. monocytogenes strains were subjected to the same in vitro procedure to assess biofilm formation, being co-inoculated with CFS. In addition, these strains were subjected to the same in vitro procedure, modified by adding the CFS after biofilm formation. Relevant decrease in biofilm formation was observed in the first experiment, but CFS added after biofilm formation did not eliminate them. CFS from Lactobacillus curvatus ET31 were selected due to its anti-biofilm activity, being associated to EDTA at different concentrations and tested for biofilm control of three strains of L. monocytogenes, using the same in vitro procedure described previously. Concentrated bacteriocin presented poor performance in eliminating formed biofilms, and EDTA concentration presented no evident interference on biofilm elimination. Twelve selected L. monocytogenes strains were positive for investigated virulence makers and negative for luxS gene, recognized as being involved in biofilm formation. Selected L. monocytogenes strains were able to produce biofilms under different conditions. CFSs have the potential to prevent biofilm formation, but they were not able to destroy already formed biofilms. Nevertheless, low concentrations of CFS combined with EDTA caused a relevant reduction in already formed biofilms, but this association was not able to eliminate them. The activity of selected CFS was demonstrated against L. monocytogenes-formed biofilms, being more effective when associated to EDTA at different concentrations.


Journal of Dairy Science | 2017

Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese

Valéria Quintana Cavicchioli; Anderson Carlos Camargo; Svetoslav Dimitrov Todorov; Luís Augusto Nero

We isolated and characterized bacteriocin producers Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC from raw milk artisanal cheeses. Their bacteriocins were tolerant to temperatures from 4°C to 100°C and under sterilization conditions (121°C for 15 min). Additionally, the tested bacteriocins remained active after being exposed to pH 2.0 to 10.0 for 2 h. The activity of the bacteriocins was affected by proteolytic enzymes but remained stable after treatment with EDTA, sodium dodecyl sulfate, NaCl, skim milk, and Tween 80. Cell-free supernatants were capable of inhibiting Listeria innocua and several strains of Listeria monocytogenes obtained from different sources and belonging to different serotypes. When L. monocytogenes 211 and L. monocytogenes 422 were treated with bacteriocins, growth was completely inhibited over 12 h. Cocultures of bacteriocinogenic strains and L. monocytogenes 422 in skim milk showed that E. hirae ST57ACC could control the growth of the pathogen in the matrix after 48 h. None of the selected isolates presented positive results on a screening panel for 25 bacteriocin-related genes, however, indicating that both strains might express novel bacteriocins.


Annals of Microbiology | 2017

In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese

Sabrina Neves Casarotti; Bruno Moreira Carneiro; Svetoslav Dimitrov Todorov; Luís Augusto Nero; Paula Rahal; Ana Lúcia Barretto Penna

The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).


Probiotics and Antimicrobial Proteins | 2017

Functional Properties of Lactobacillus mucosae Strains Isolated from Brazilian Goat Milk

Georgia Maciel Dias de Moraes; Louricélia Rodrigues de Abreu; Antônio S. Egito; Hévila Oliveira Salles; Liana Maria Ferreira da Silva; Luís Augusto Nero; Svetoslav Dimitrov Todorov; Karina Maria Olbrich dos Santos

The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.


Probiotics and Antimicrobial Proteins | 2017

In Vitro Evaluation of Beneficial Properties of Bacteriocinogenic Lactobacillus plantarum ST8Sh

Svetoslav Dimitrov Todorov; Wilhelm H. Holzapfel; Luís Augusto Nero

Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami “shpek” and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.


Brazilian Journal of Microbiology | 2017

Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “lukanka”

Svetoslav Dimitrov Todorov; Saso Stojanovski; Ilia Iliev; Penka Moncheva; Luís Augusto Nero; I. Ivanova

The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented “lulanka” salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity). The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation.


International Journal of Antimicrobial Agents | 2018

Inhibition of Herpes simplex virus 1 and Poliovirus (PV-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk

Valéria Quintana Cavicchioli; Otávio Valério de Carvalho; Janine Cerqueira de Paiva; Svetoslav Dimitrov Todorov; Abelardo Silva Júnior; Luís Augusto Nero

Bacteriocins have unusual inhibitory activity, including antiviral properties, and this can be exploited to give alternative applications. Semi-purified bacteriocins of six lactic acid bacteria (LAB) strains isolated from goat milk (two Lactococcus lactis: GLc03 and GLc05, and four Enterococcus durans: GEn09, GEn12, GEn14 and GEn17) were tested for cytotoxicity in Vero cells (50% Cytotoxicity Concentration: CC50), and for their antiviral activities against herpes simplex virus 1 (HVS-1) and poliovirus (PV-1). Semi-purified bacteriocins presented low cytotoxicity, with CC50 varying from 256.2 µg/mL (GLc05) to 1084.5 µg/mL (GEn14). CC10 was determined for all isolates (GLc03: 36.9 µg/mL; GLc05: 51.2 µg/mL; GEn09: 88.1 µg/mL; GEn12: 99.9 µg/mL; GEn14: 275 µg/mL; and GEn17: 62.2 µg/mL) and considered for antiviral activity assays. Antiviral activity before virus adsorption was recorded against PV-1 for GLc05 (4.9%), GEn09 (3.4%), GEn12 (24.7%) and GEn17 (23.5%), and against HSV-1 for GEn12 (27.9%), GEn14 (58.7%) and GEn17 (39.2%). Antiviral activity after virus adsorption was identified against PV-1 for GLc05 (32.7%), GEn09 (91.0%), GEn12 (93.7%) and GEn17 (57.2%), and against HSV-1 for GEn17 (71.6%). The results obtained indicate the potential of some bacteriocins, particularly those produced by E. durans strains investigated in the present study, in viral inhibition and their application as new antiviral agents.


Revista Argentina De Microbiologia | 2017

Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes

Svetoslav Dimitrov Todorov; Otávio Almeida Lino de Paula; Anderson Carlos Camargo; Danilo Augusto Lopes; Luís Augusto Nero

The Listeria monocytogenes strains selected in the present study exhibited similar behavior in biofilm formation, independently of the tested conditions (bacteriocin from L. plantarum ST8SH, vancomycin, propolis (a natural antimicrobial product) and EDTA (chelating agent)), individual or in associations. The individual application of vancomycin had better inhibitory activity than that of propolis and EDTA; however, the association of the previously mentioned antimicrobial agents with bacteriocins resulted in better performance. However, when we compared the effects of vancomycin, propolis and EDTA, we could clearly observe that the combined application of bacteriocin and vancomycin was more effective than the combination of bacteriocin and propolis, and bacteriocin and EDTA. Considering the current need to reduce the use of antimicrobials and chemical substances in food processing, propolis can represent an alternative to improve the inhibitory effect of bacteriocins against L. monocytogenes biofilm formation, based on the obtained results. In general, high concentrations of bacteriocin produced by L. plantarum ST8SH were more effective in biofilm inhibition, and similar results were observed for vancomycin and propolis; however, all tested EDTA concentrations had similar effect on biofilm formation.


Semina-ciencias Agrarias | 2018

In vitro evaluation of the safety and probiotic and technological potential of Pediococcus pentosaceus isolated from sheep milk

Mayara Leal Fernandes; Luana Martins Perin; Svetoslav Dimitrov Todorov; Luís Augusto Nero; Ernandes Rodrigues de Alencar; Márcia de Aguiar Ferreira

Six isolates (Ac1Pd, Ac3Pd, Ac4Pd, Ac5Pd, Ac7Pd, and Ac22Pd) of Pediococcus pentosaceus from sheep milk were tested for safety and for probiotic and technological potential. The results showed that none of the isolates were able to produce biogenic amines or virulence factors. The isolates tested showed low hydrophobicities, high auto-aggregation capacities and co-aggregation with L. monocytogenes ATCC 7644, L. sakei ATCC 15521 and E. faecalis ATCC 19444, but none produced β-galactosidase and bacteriocins. The isolates did not show growth at pH values 3 and 12, while in a pH range from 4 to 10 the growth was variable. In the absence of bile, all the isolates showed growth, with suppression at bile concentrations of 0.1%, 0.3%, 0.6% and 1.0%. In the disc-diffusion test, the isolates tested were resistant to oxacillin, sulfatrimethoprim and vancomycin but were sensitive to chloramphenicol and tetracycline. The isolates showed variable responses to penicillin G and were resistant to most of the drugs tested, except for amoxicillin trihydrate and ibuprofen. All cultures showed a high milk-acidification capacity after 24 hours and none produced exopolysaccharides. The isolates of P. pentosaceus were able to produce diacetyl; however, no culture showed extracellular proteolytic activity and the autolysis varied from 21.3% to 30.5% after 24 h. The isolates grew at NaCl concentrations of 4.0 and 6.0%, but the growth was lower at 10.0%. Finally, all the isolates were found to be safe but had limited application as probiotics and in some technological uses.


Probiotics and Antimicrobial Proteins | 2018

Potential Control of Listeria monocytogenes by Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC Strains Isolated From Artisanal Cheese

Valéria Quintana Cavicchioli; Anderson Carlos Camargo; Svetoslav Dimitrov Todorov; Luís Augusto Nero

Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains, previously isolated from artisanal cheese, were evaluated for their safety with the aim to determine whether they could be used as beneficial strains, especially in the control of Listeria monocytogenes. Both isolates survived simulated gastrointestinal conditions and showed high levels of auto- and co-aggregation with L. monocytogenes, although the hydrophobicity of cells varied. Using the agar-spot test with 33 commercial drugs from different groups, only anti-inflammatory drugs and drugs containing loratadine and propranolol hydrochloride were able to affect the growth of the tested strains. Both strains were resistant to 3 out of 11 antibiotics tested by the disc diffusion method, and low frequencies of antibiotic resistance-encoding genes were observed by PCR analysis. Tested strains neither presented biogenic amine-related genes nor produced these substances. Aside from some antibiotic resistance characteristics, the tested strains were considered safe as they lack other virulence-related genes. E. hirae ST57ACC and P. pentosaceus ST65ACC both presented beneficial properties, particularly their ability to survive gastrointestinal conditions and to aggregate with L. monocytogenes, which can facilitate the elimination of this pathogen. Further studies should be conducted to better understand these interactions.

Collaboration


Dive into the Svetoslav Dimitrov Todorov's collaboration.

Top Co-Authors

Avatar

Luís Augusto Nero

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Anderson Carlos Camargo

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Luana Martins Perin

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abelardo Silva Júnior

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Antônio S. Egito

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Bruno Moreira Carneiro

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge