Svyatoslav E. Tolstikov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svyatoslav E. Tolstikov.
Inorganic Chemistry | 2014
Takanori Furui; Shuichi Suzuki; Masatoshi Kozaki; Daisuke Shiomi; Kazunobu Sato; Takeji Takui; Keiji Okada; Evgeny V. Tretyakov; Svyatoslav E. Tolstikov; G. V. Romanenko; Victor I. Ovcharenko
Metal complexation reactions of N-t-butyl-N-oxidanyl-2-amino(nitronyl nitroxide) diradical (1) with M(hfac)2 (M: Mn or Cu) were investigated. These reactions were found to be very sensitive to the type of metal ion employed. Complex [Mn(hfac)2·1], consisting of Mn(hfac)2 and diradical 1, was readily prepared by mixing the components. However, the reaction of Cu(hfac)2 with 1 or N-t-butyl-N-oxidanyl-2-amino(iminonitroxide) diradical (2) involved the reduction of the diradical to the N-t-butyl-N-oxidanide-2-amino(iminonitroxide) radical anion (3) and finally produced the polymer-chain complex [Cu2(hfac)2·32·Cu(hfac)2]n. The structures of these complexes were elucidated by X-ray analysis, and their magnetic properties were investigated in detail. The temperature dependence of χpT (χp: magnetic susceptibility) for [Mn(hfac)2·1] exhibited a strong antiferromagnetic interaction (H = -2JS1·S2, J/kB = -217 K) between the Mn(II) spin (S = 5/2) and the diradical 1 spin (S = 1). However, the χpT-T plots for [Cu2(hfac)2·32·Cu(hfac)2]n indicated the presence of several magnetic interactions: a large ferromagnetic interaction (J/kB = 510 K) between iminonitroxide 3 and the imino-coordinating Cu(II) atom, a moderately large ferromagnetic interaction (J/kB = 58 K) between the iminonitroxide and (iminonitroxide oxygen)-coordinating Cu(hfac)2, and a weak antiferromagnetic interaction (J/kB = -1.4 K) between the two Cu(hfac)-3 moieties within a Cu2O2 square.
Inorganic Chemistry | 2012
Evgeny V. Tretyakov; Svyatoslav E. Tolstikov; Anastasiya O. Suvorova; Aleksey V. Polushkin; G. V. Romanenko; Artem S. Bogomyakov; Sergey L. Veber; Matvey V. Fedin; D. V. Stass; Edward J. Reijerse; Wolfgang Lubitz; Ekaterina M. Zueva; Victor I. Ovcharenko
Breathing crystals based on polymer-chain complexes of Cu(hfac)(2) with nitroxides exhibit thermally and light-induced magnetostructural anomalies in many aspects similar to a spin crossover. In the present work, we report the synthesis and investigation of a new family of Cu(hfac)(2) complexes with tert-butylpyrazolylnitroxides and their nonradical structural analogues. The complexes with paramagnetic ligands clearly exhibit structural rearrangements in the copper(II) coordination units and accompanying magnetic phenomena characteristic for breathing crystals. Contrary to that, their structural analogues with diamagnetic ligands do not undergo rearrangements in the copper(II) coordination environments. This confirms experimentally the crucial role of paramagnetic ligands and exchange interactions between them and copper(II) ions for the origin of magnetostructural anomalies in this family of molecular magnets.
Chemistry: A European Journal | 2014
Svyatoslav E. Tolstikov; Evgeny V. Tretyakov; S. V. Fokin; Elizaveta A. Suturina; G. V. Romanenko; Artem S. Bogomyakov; Dmitri V. Stass; Alexander Maryasov; Matvey V. Fedin; Nina P. Gritsan; Victor I. Ovcharenko
Spin-labelled compounds are widely used in chemistry, physics, biology and the materials sciences but the synthesis of stable high-spin organic molecules is still a challenge. We succeeded in synthesising heteroatom analogues of the 1,1,2,3,3-pentamethylenepropane (PMP) diradicals with two nitronyl nitroxide (DR1) and with two iminonitroxide (DR2) fragments linked through the C(sp2) atom of the nitrone group. According to magnetic susceptibility measurements, EPR data and ab initio calculations at the (8,6)CASSCF and (8,6)NEVPT2 levels, DR1 and DR2 have singlet ground states. The singlet–triplet energy splitting (2J) is low (J/k=−7.4 for DR1 and −6.0 K for DR2), which comes from the disjoint nature of these diradicals. The reaction of [Cu(hfac)2] with DR1 gives rise to different heterospin complexes in which the diradical acts as a rigid ligand, retaining its initial conformation. For the [{Cu(hfac)2}2(DR1)(H2O)] complex, sufficiently strong ferromagnetic interactions (J1/k=42.7 and J2/k=14.1 K) between two coordinating CuII ions and DR1 were revealed. In [{Cu(hfac)2}2(DR1)(H2O)][Cu(hfac)2(H2O)], the very strong and antiferromagnetic (J/k=−416.1 K) exchange interaction between one of the coordinating CuII ions and DR1 is caused by the very short equatorial CuO bond length (1.962 Å).
Chemistry: A European Journal | 2016
Svyatoslav E. Tolstikov; Evgeny V. Tretyakov; Dmitry Gorbunov; Irina F. Zhurko; Matvey V. Fedin; G. V. Romanenko; Artem S. Bogomyakov; Nina P. Gritsan; Dmitry G. Mazhukin
It was shown that dipole-stabilized paramagnetic carbanion lithiated 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide can be attached in a nucleophilic manner to either isolated or conjugated aldonitrones of the 2,5-dihydroimidazole 3-oxide and 2H-imidazole 1-oxide series to afford adducts the subsequent oxidation of which leads to polyfunctional mono- and diradicals. According to XRD, at least two polymorphic modifications can be formed during crystallization of the resulting paramagnetic compounds, and for each of them, geometric parameters of the molecules are similar. An EPR spectrum of the diradical in frozen toluene has a complicated lineshape, which can be fairly well reproduced by using X-ray diffraction structural analysis and the following set of parameters: D=14.9 mT, E=1.7 mT; tensor a((14) N)=[0.260 0.260 1.625] mT, two equivalent tensors for the nitronyl nitroxide moiety a((14) N)=[0.198 0.198 0.700] mT, and g≈2.007. According to our DFT and ab initio calculations, the intramolecular exchange in the diradical is very weak and most likely ferromagnetic.
Inorganic Chemistry | 2017
Sergey V. Tumanov; Sergey L. Veber; Svyatoslav E. Tolstikov; Natalia A. Artiukhova; G. V. Romanenko; Victor I. Ovcharenko; Matvey V. Fedin
Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.
Journal of Physical Chemistry A | 2013
Eugenii Ya. Misochko; Denis V. Korchagin; Alexander V. Akimov; Artem A. Masitov; Svyatoslav E. Tolstikov; Evgeny V. Tretyakov; Victor I. Ovcharenko
The ESR spectrum of compact nitroxide (NO)-substituted nitronyl nitroxide (NN) triplet diradical N-tert-butyl-N-oxidanyl-2-amino-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (1) was recorded in solid argon matrix at 15 K. The zero-field splitting (ZFS) parameters of 1 were derived from the recorded ESR spectrum: |D| = 0.0248 cm(-1) and E = 0.0025 cm(-1). Quantum chemical calculations have been performed using DFT and multiconfigurational ab initio (CAS) methods in order to establish equilibrium geometries of the conformational isomers resulting from twisted conformations of NO and NN moieties. The ZFS parameters of 1 were calculated at these levels of theory to test validity of the calculated structures. The calculation results were analyzed using the measured ZFS parameters and magnetic and structural data from the previous studies (Suzuki, S.; et al. J. Am. Chem. Soc. 2010, 132, 15908; Tretyakov, E. V.; et al. Russ. Chem. Bull. 2011, 60, 2608). It was found that the ab initio method is most successful for accurate predictions of molecular and magnetic parameters. Diradical 1 has only one stable enantiomeric pair in pseudoeclipsed conformations. The two chiral isomers exist in racemic crystals 1 and in solid matrices with molecular parameters close to those attributed to a free molecule. The analysis of the spin density distribution suggests that one unpaired electron occupies NO group at the equilibrium geometry, whereas the torsion of NO group governs the spin density distribution of the second unpaired electron on a conjugated fragment in NN group. The increase in planarity by torsion of NO group enhances the trimethylenemethane-type properties and, therefore, gives rise to larger ferromagnetic exchange interaction. More planar equilibrium geometry and greater (three times) exchange interaction constant J were predicted for hypothetical diradical 1a, where bulky tert-butyl group is replaced by a methyl group in the nitroxide fragment.
Journal of Structural Chemistry | 2013
E. V. Tretyakov; Svyatoslav E. Tolstikov; G. V. Romanenko; A. S. Bogomyakov; R. Z. Sagdeev; V. M. Novotortsev; V. I. Ovcharenko
Previously unknown [ML2(H2O)n] bischelates, where M is Mn(II), Co(II), Ni(II), or Cu(II) and L is deprotonated triformylmethane, are studied by X-ray diffraction analysis. It is revealed that in the crystals of all compounds there are multiple hydrogen bonds linking bischelate molecules into polymer layers or a single framework. The character of the temperature dependence of the effective magnetic moment [ML2(H2O)n] indicates the existences of weak intracrystalline exchange interactions between the unpaired electrons of the paramagnetic centers.
Russian Chemical Bulletin | 2017
R. Z. Sagdeev; Svyatoslav E. Tolstikov; S. V. Fokin; I. V. Obsharova; Sergey V. Tumanov; Sergey L. Veber; G. V. Romanenko; A. S. Bogomyakov; Matvey V. Fedin; E. V. Tretyakov; M. Halcrow; V. I. Ovcharenko
We synthesized 1-ethylimidazolyl-substituted nitronyl nitroxides, i.e., 2-(1-ethylimidazol-4-yl)- (L4Et) and 2-(1-ethylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Et). The stable radical L5Et is an ethyl analog of 2-(1-methylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Me) described earlier, the reaction of which with Cu(hfac)2 (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) leads to the formation of the [Cu(hfac)2(L5Me)2] jumping crystals. The reaction of Cu(hfac)2 with L5Et with reagent ratios 1: 2 and 1: 1 yields heterospin complexes [Cu(hfac)2(L5Et)2] and [Cu(hfac)2L5Et]2, respectively. X-ray diffraction study of the mononuclear complex [Cu(hfac)2(L5Et)2] determined that the compound has a packing similar to that of jumping crystals studied earlier, with the only difference being that the O...O contacts between neigh- boring nitroxide groups were found to be 0.3—0.5 Å longer than in [Cu(hfac)2(L5Me)2]. As a result of the lengthening of these contacts, [Cu(hfac)2(L5Et)2] crystals lack chemomechanical activi- ty. We found that when cooling crystals of binuclear complex [Cu(hfac)2L5Et]2 below 50 K, the antiferromagnetic exchange between unpaired electrons of the >N—•O groups of neighboring molecules leads to the full spin-pairing of the nitroxides, with only the Cu2+ ions contributing to the residual paramagnetism of the compound.
Journal of Structural Chemistry | 2013
E. V. Tretyakov; G. V. Romanenko; Svyatoslav E. Tolstikov; V. I. Ovcharenko
Molecular and crystal structures are determined for amino-substituted nitronyl nitroxide 1, the products of its subsequent oxidation, acylation, and reduction: zwitter-ions 3a, 3b and salts K(4b) and K2(4b)(CF3CO2).
Polyhedron | 2008
E. V. Tretyakov; Svyatoslav E. Tolstikov; Elena V. Gorelik; Matvey V. Fedin; G. V. Romanenko; Artem S. Bogomyakov; Victor I. Ovcharenko