Swaid Abdullah
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Swaid Abdullah.
Journal of Food Science and Technology-mysore | 2015
Anita Tewari; Swaid Abdullah
Food borne illnesses result from eating food or drinking beverages that are contaminated with chemical matter, heavy metals, parasites, fungi, viruses and Bacteria. Bacillus cereus is one of the food-borne disease causing Bacteria. Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. Their spores may be present on various types of raw and cooked foods, and their ability to survive high cooking temperatures requires that cooked foods be served hot or cooled rapidly to prevent the growth of this bacteria. Bacillus cereus is well known as a cause of food poisoning, and much more is now known about the toxins produced by various strains of this species, so that its significance in such episodes are clearer. However, it is still unclear why such cases are so rarely reported worldwide.
Veterinary Parasitology | 2017
Saran Davies; Swaid Abdullah; Christopher R Helps; Séverine Tasker; Hannah Newbury; Richard Wall
In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens.
Medical and Veterinary Entomology | 2017
Jolyon M. Medlock; Kayleigh M. Hansford; A. G.C. Vaux; Benjamin Cull; Swaid Abdullah; Maaike E. Pietzsch; Richard Wall; Nicholas Johnson; L. P. Phipps
The recent implication of Dermacentor reticulatus (Ixodida: Ixodidae) in the transmission of canine babesiosis in the U.K. has highlighted the lack of accurate published data on its distribution in this country. This paper aims to collate and appraise historical data for D. reticulatus, to supplement such data with more recent surveillance data and to report on field sampling conducted during 2009–2016. These updated data facilitate better understanding of the current distribution of this tick in the U.K., which will better inform disease risk assessments. There appear to be four known regions of the U.K. in which D. reticulatus currently occurs, including western Wales, North and South Devon, and Essex. The majority of foci are located in coastal sand dunes and maritime grasslands, including grazing marsh. However, more recently the tick has been detected in urban greenspace in Essex. The emergence of this tick as a vector of babesiosis in the U.K. and its recent apparent spread in Essex into urban greenspace highlight the need for continued surveillance and for further research into its status as a vector of human and veterinary pathogens.
Medical and Veterinary Entomology | 2018
Swaid Abdullah; Christopher R Helps; Séverine Tasker; Hannah Newbury; Richard Wall
Ticks were collected during March–July 2015 from dogs by veterinarians throughout the U.K. and used to estimate current prevalences and distributions of pathogens. DNA was extracted from 4750 ticks and subjected to polymerase chain reaction and sequence analysis to identify Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) and Babesia (Piroplasmida: Babesiidae) species. Of 4737 ticks [predominantly Ixodes ricinus Linneaus (Ixodida: Ixodidae)], B. burgdorferi s.l. was detected in 94 (2.0%). Four Borrelia genospecies were identified: Borrelia garinii (41.5%); Borrelia afzelli (31.9%); Borrelia burgdorferi sensu stricto (25.5%), and Borrelia spielmanii (1.1%). One Rhipicephalus sanguineus Latreille (Ixodida: Ixodidae), collected from a dog with a history of travel outside the U.K., was positive for B. garinii. Seventy ticks (1.5%) were positive for Babesia spp. Of these, 84.3% were positive for Babesia venatorum, 10.0% for Babesia vulpes sp. nov., 2.9% for Babesia divergens/Babesia capreoli and 1.4% for Babesia microti. One isolate of Babesia canis was detected in a Dermacentor reticulatus (Ixodida: Ixodidae) tick collected from a dog that had recently travelled to France. Prevalences of B. burgdorferi s.l. and Babesia spp. did not differ significantly between different regions of the U.K. The results map the widespread distribution of B. burgdorferi s.l. and Babesia spp. in ticks in the U.K. and highlight the potential for the introduction and establishment of exotic ticks and tick‐borne pathogens.
Parasites & Vectors | 2017
Sándor Hornok; Attila D. Sándor; Relja Beck; Róbert Farkas; Lorenza Beati; Jenő Kontschán; Nóra Takács; Gábor Földvári; Cornelia Silaghi; Elisabeth Meyer-Kayser; Adnan Hodžić; Snežana Tomanović; Swaid Abdullah; Richard Wall; Agustín Estrada-Peña; Georg Gerhard Duscher; Olivier Plantard
BackgroundIn Europe, hard ticks of the subgenus Pholeoixodes (Ixodidae: Ixodes) are usually associated with burrow-dwelling mammals and terrestrial birds. Reports of Pholeoixodes spp. from carnivores are frequently contradictory, and their identification is not based on key diagnostic characters. Therefore, the aims of the present study were to identify ticks collected from dogs, foxes and badgers in several European countries, and to reassess their systematic status with molecular analyses using two mitochondrial markers.ResultsBetween 2003 and 2017, 144 Pholeoixodes spp. ticks were collected in nine European countries. From accurate descriptions and comparison with type-materials, a simple illustrated identification key was compiled for adult females, by focusing on the shape of the anterior surface of basis capituli. Based on this key, 71 female ticks were identified as I. canisuga, 21 as I. kaiseri and 21 as I. hexagonus. DNA was extracted from these 113 female ticks, and from further 31 specimens. Fragments of two mitochondrial genes, cox1 (cytochrome c oxidase subunit 1) and 16S rRNA, were amplified and sequenced. Ixodes kaiseri had nine unique cox1 haplotypes, which showed 99.2–100% sequence identity, whereas I. canisuga and I. hexagonus had eleven and five cox1 haplotypes, respectively, with 99.5–100% sequence identity. The distribution of cox1 haplotypes reflected a geographical pattern. Pholeoixodes spp. ticks had fewer 16S rRNA haplotypes, with a lower degree of intraspecific divergence (99.5–100% sequence identity) and no geographical clustering. Phylogenetic analyses were in agreement with morphology: I. kaiseri and I. hexagonus (with the similar shape of the anterior surface of basis capituli) were genetically more closely related to each other than to I. canisuga. Phylogenetic analyses also showed that the subgenus Eschatocephalus (bat ticks) clustered within the subgenus Pholeoixodes.ConclusionsA simple, illustrated identification key is provided for female Pholeoixodes ticks of carnivores (including I. hexagonus and I. rugicollis) to prevent future misidentification of these species. It is also shown that I. kaiseri is more widespread in Europe than previously thought. Phylogenetic analyses suggest that the subgenus Pholeoixodes is not monophyletic: either the subgenus Eschatocephalus should be included in Pholeoixodes, or the latter subgenus should be divided, which is a task for future studies.
Parasites & Vectors | 2018
Swaid Abdullah; Saran Davies; Richard Wall
BackgroundTicks store lipid as an energy souce, which depletes progressively between blood meals. The amount of lipid and rate of lipid depletion can be used as a good indicator of the feeding history and assist in explaining the phenology of tick populations. However, existing gravimetric approaches to lipid measurement are relatively imprecise. To improve our ability to accurately measure lipid accumulation and metabolism in individual ticks, a microquantity colorimetric sulfophosphovanillan method of lipid estimation was standardised and used to explore the seasonal variations in the lipid content of I. ricinus nymphs.ResultsLipid values for field-derived questing ticks, collected by blanket dragging, varied between 5–45 μg and clear patterns of lipid depletion were demonstrated under controlled laboratory conditions. For field populations collected monthly over two years, the results indicate that two different cohorts of nymphs enter the questing tick population in autumn and spring, with very few nymphs joining the population in summer.ConclusionsThe data illustrate the seasonal change in lipid content of nymphal ticks, reflecting their feeding history and highlight the utility of the spectrophotometric technique for analysis of lipid in ticks in helping to improve our understanding of seasonal activity patterns.
Parasites & Vectors | 2016
Swaid Abdullah; Christopher R Helps; Séverine Tasker; Hannah Newbury; Richard Wall
Archives of Clinical and Experimental Surgery | 2012
Swaid Abdullah; Latief Mohammad Dar; Adil Rashid; Anita Tewari
Parasites & Vectors | 2018
Florent Duplan; Saran Davies; Serina Filler; Swaid Abdullah; Sophie Keyte; Hannah Newbury; Christopher R Helps; Richard Wall; Séverine Tasker
International Journal of Livestock Research | 2013
Adil Rashid; Mohammad Maqbool Darzi; Masood Saleem Mir; Shayaib Ahmad Kamil; Latief Mohammad Dar; Mir Ambreen; Swaid Abdullah