Swaminathan Sunder
Air Products & Chemicals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Swaminathan Sunder.
ASME 2003 1st International Conference on Microchannels and Minichannels | 2003
V. V. Kuznetsov; S. V. Dimov; Patrick Alan Houghton; A. S. Shamirzaev; Swaminathan Sunder
When boiling or condensation occurs inside very small and non-circular channels, capillary forces influence two-phase flow patterns, which in turn determine heat transfer coefficients and pressure drop. A better understanding of the underlying phenomena would be beneficial from the perspective of optimizing the design of compact evaporators and condensers. The thrust of this study was to understand the nature of up-flow boiling and condensation heat transfer in channels with a small gap. It consisted of two parts. The first part included observation of two-phase flow patterns with refrigerant R21 in a test section containing plain fins. The shape of the channels formed between fins was close to rectangular. The test section was placed in a closed refrigerant loop, and it was fabricated with a transparent wall to allow observation of the flow. An electrically heated coil was used to introduce liquid and vapor at the needed quality into the test section. Regimes of slug, froth, annular and cell flow patterns were recognized and the areas of flow pattern were determined. The second part included up-flow boiling and condensation heat transfer measurement with refrigerant R21 in a set of vertical mini-channels consisting of plain fins. An aluminum fin pad was bonded to two dividing aluminum sheets by dip brazing. Heat was supplied to the test section from a thermoelectric module, which utilized the Peltier effect. A thick copper plate was placed between the dividing sheet on each side of the fin passage and the respective Peltier module to establish a uniform wall temperature. Heat transfer coefficient measurements were done under forced flow conditions. Data are obtained for mass flow rates of 30 and 50 kg/m2 s under both boiling and condensation modes with wall superheats ranging from 1 to 5K. The dependence of heat transfer coefficient from wall superheat was not observed both for boiling and condensing modes. It shows the primary role of evaporation from thin films in a confined space when the mass flux is small. At low vapor quality the boiling heat transfer coefficients are considerably higher than that for condensation. A high heat flux in ultra thin liquid film area near the channel corner or in the vicinity of liquid-vapor-solid contact line (after the film rupture) supports the high total heat transfer coefficient in evaporation mode. In contrast with evaporation mode, at upflow condensation mode the heat transfer coefficient is strongly dependent on vapor quality. At plug flow regime the vapor velocity determines the condensing heat transfer.Copyright
Archive | 1986
John J. Kearns; Paul A. Tremblay; Raymond J. Robey; Swaminathan Sunder
Archive | 1992
Swaminathan Sunder; Douglas Leslie Bennett; Donn Michael Herron; Keith Alan Ludwig; Edwin C. Rogusky
Archive | 2003
Swaminathan Sunder; Patrick Alan Houghton; Vladimir Vasilievich Kuznetsov
Archive | 1997
Swaminathan Sunder; Mark Robert Pillarella; Frank Jude Riska
Journal of the American Ceramic Society | 1992
Diwakar Garg; Paul Nigel Dyer; Duane Dimos; Swaminathan Sunder; Hans E. Hintermann; Michel Maillat
Archive | 2002
Swaminathan Sunder
Archive | 2001
Swaminathan Sunder; Herbert Charles Klotz; George Amir Meski
Archive | 1989
Swaminathan Sunder; Diwakar Garg; Paul Nigel Dyer
Archive | 1996
Swaminathan Sunder; Mark Robert Pillarella; Frank Jude Riska