Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swamy K. Tripurani is active.

Publication


Featured researches published by Swamy K. Tripurani.


Animal Reproduction Science | 2010

Cloning and analysis of fetal ovary microRNAs in cattle.

Swamy K. Tripurani; Caide Xiao; Mohamed Salem; Jianbo Yao

Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed. Sequence analysis of random clones from the library identified 679 miRNA sequences, which represent 58 distinct bovine miRNAs. Of these distinct miRNAs, 42 are known bovine miRNAs present in the miRBase database and the remaining 16 miRNAs include 15 new bovine miRNAs that are homologous to miRNAs identified in other species, and one novel miRNA, which does not match any miRNAs in the database. The precursor sequences for 14 of the new 15 miRNAs as well as the novel miRNA were identified from the bovine genome database and their hairpin structures were predicted. Expression analysis of the 58 miRNAs in fetal ovaries in comparison to somatic tissue pools identified 8 miRNAs predominantly expressed in fetal ovaries. Further analysis of the eight miRNAs in germinal vesicle (GV) stage oocytes identified two miRNAs (bta-mir424 and bta-mir-10b), that are highly abundant in GV oocytes. Both miRNAs show similar expression patterns during oocyte maturation and preimplantation development of bovine embryos, being abundant in GV and MII stage oocytes, as well as in early stage embryos (until 16-cell stage). The amount of the novel miRNA is relatively small in oocytes and early cleavage embryos but greater in blastocysts, suggesting a role of this miRNA in blastocyst cell differentiation.


Biology of Reproduction | 2009

Role of Importin Alpha8, a New Member of the Importin Alpha Family of Nuclear Transport Proteins, in Early Embryonic Development in Cattle

Jyothsna Tejomurtula; Kyung Bon Lee; Swamy K. Tripurani; George W. Smith; Jianbo Yao

Abstract Nuclear proteins such as transcription and chromatin remodeling factors are required for initiation of transcription in early embryos before embryonic genome activation. The nuclear transport of these proteins is mediated by transport factors such as importins. Through analysis of expressed sequence tags from a bovine oocyte cDNA library, we identified a new member of the importin alpha family (named importin alpha8). The cloned cDNA for bovine importin alpha8 (KPNA7) is 1817 base pair in length, encoding a protein of 522 amino acids that contains a conserved importin beta-binding domain and seven armadillo motifs. The RT-PCR analysis revealed that KPNA7 mRNA is specifically expressed in ovaries and mature oocytes. Real-time PCR demonstrated that KPNA7 expression in germinal vesicle (GV) oocytes is 33 to 2396 times higher than that of other importin alpha genes and that KPNA7 mRNA is abundant in GV and metaphase II oocytes, as well as in early-stage embryos collected before embryonic genome activation, but is barely detectable in morula- and blastocyst-stage embryos. Similarly, expression of KPNA7 protein is very high in oocytes and early embryos but is low in blastocysts. A glutathione S-transferase pull-down assay revealed that KPNA7 has a strong binding affinity for the nuclear protein nucleoplasmin 2 relative to that of other importin alphas. RNA interference experiments demonstrated that knockdown of KPNA7 in early embryos results in a decreased proportion of embryos developing to the blastocyst stage. These results suggest that KPNA7 may have an important role in the transport of essential nuclear proteins required for early embryogenesis.


Endocrinology | 2011

A Novel Functional Role for the Oocyte-Specific Transcription Factor Newborn Ovary Homeobox (NOBOX) during Early Embryonic Development in Cattle

Swamy K. Tripurani; Kyung Bon Lee; Lei Wang; Gabbine Wee; George W. Smith; Young S. Lee; Keith E. Latham; Jianbo Yao

Newborn ovary homeobox (NOBOX) is an oocyte-specific transcription factor essential for folliculogenesis and expression of many germ cell-specific genes in mice. Here we report the characterization of the bovine NOBOX gene and its role in early embryogenesis. The cloned cDNA for bovine NOBOX contains an open reading frame encoding a protein of 500 amino acids with a conserved homeodomain. mRNA for NOBOX is preferentially expressed in ovaries and undetectable by RT-PCR in somatic tissues examined. NOBOX protein is present in oocytes throughout folliculogenesis. NOBOX is expressed in a stage-specific manner during oocyte maturation and early embryonic development and of maternal origin. Knockdown of NOBOX in early embryos using small interfering RNA demonstrated that NOBOX is required for embryonic development to the blastocyst stage. Depletion of NOBOX in early embryos caused significant down-regulation of genes associated with transcriptional regulation, signal transduction, and cell cycle regulation during embryonic genome activation. In addition, NOBOX depletion in early embryos reduced expression of pluripotency genes (POU5F1/OCT4 and NANOG) and number of inner cell mass cells in embryos that reached the blastocyst stage. This study demonstrates that NOBOX is an essential maternal-derived transcription factor during bovine early embryogenesis, which functions in regulation of embryonic genome activation, pluripotency gene expression, and blastocyst cell allocation.


PLOS ONE | 2013

MicroRNA-212 Post-Transcriptionally Regulates Oocyte-Specific Basic-Helix-Loop-Helix Transcription Factor, Factor in the Germline Alpha (FIGLA), during Bovine Early Embryogenesis

Swamy K. Tripurani; Gabbine Wee; Kyung Bon Lee; George W. Smith; Lei Wang; [No Value] JianboYao

Factor in the germline alpha (FIGLA) is an oocyte-specific basic helix-loop-helix transcription factor essential for primordial follicle formation and expression of many genes required for folliculogenesis, fertilization and early embryonic survival. Here we report the characterization of bovine FIGLA gene and its regulation during early embryogenesis. Bovine FIGLA mRNA expression is restricted to gonads and is detected in fetal ovaries harvested as early as 90 days of gestation. FIGLA mRNA and protein are abundant in germinal vesicle and metaphase II stage oocytes, as well as in embryos from pronuclear to eight-cell stage but barely detectable at morula and blastocyst stages, suggesting that FIGLA might be a maternal effect gene. Recent studies in zebrafish and mice have highlighted the importance of non-coding small RNAs (microRNAs) as key regulatory molecules targeting maternal mRNAs for degradation during embryonic development. We hypothesized that FIGLA, as a maternal transcript, is regulated by microRNAs during early embryogenesis. Computational predictions identified a potential microRNA recognition element (MRE) for miR-212 in the 3’ UTR of the bovine FIGLA mRNA. Bovine miR-212 is expressed in oocytes and tends to increase in four-cell and eight-cell stage embryos followed by a decline at morula and blastocyst stages. Transient transfection and reporter assays revealed that miR-212 represses the expression of FIGLA in a MRE dependent manner. In addition, ectopic expression of miR-212 mimic in bovine early embryos dramatically reduced the expression of FIGLA protein. Collectively, our results demonstrate that FIGLA is temporally regulated during bovine early embryogenesis and miR-212 is an important negative regulator of FIGLA during the maternal to zygotic transition in bovine embryos.


Plant Molecular Biology Reporter | 2011

Spatial and Temporal Expression of Cold-responsive DEAD-box RNA Helicases Reveals their Functional Roles During Embryogenesis in Arabidopsis thaliana

Swamy K. Tripurani; Kentaro Nakaminami; Kari Thompson; Samuel V. Crowell; Charles L. Guy; Dale T. Karlson

DEAD-box RNA helicases compose a large subfamily of RNA helicases found in all eukaryotes and prokaryotes. Functional DEAD-box RNA helicases are considered to be RNA chaperones that modify RNA secondary structure and perhaps three-dimensional structures during different cellular processes involving RNA metabolism. Although a relationship of DEAD-box RNA helicases to abiotic stress adaptation is known, few reports document the involvement of RNA helicases during plant growth and development. In this study, detailed analyses were performed for two cold-responsive DEAD-box RNA helicases, AtRH22 and AtRH52, on the transcript level during different developmental stages of Arabidopsis thaliana. Expression levels of AtRH22 and AtRH52 were up-regulated markedly in response to cold stress and were enriched in shoot apical meristems, floral buds, and siliques. The expression of AtRH22 and AtRH52 was spatiotemporally regulated during vegetative growth, floral transition and embryonic development. To investigate, the functional role of AtRH22 and AtRH52 in A. thaliana, we functionally characterized independent T-DNA insertion mutant lines for both genes. Genotypic analysis of self-fertilized heterozygous lines revealed only heterozygous (WT/T-DNA) and homozygous wild-type progeny for AtRH22 and AtRH52. Self-fertilized heterozygous mutants of AtRH22 and AtRH52 show normal vegetative phenotype, but produced normal-sized and abortive seeds. Collectively, these results demonstrate that the cold-responsive AtRH22 and AtRH52 genes are spatiotemporally regulated during plant development and are essential during Arabidopsis embryogenesis.


Reproductive Biology and Endocrinology | 2013

Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

Lei Wang; Swamy K. Tripurani; Warapond Wanna; Caird E. Rexroad; Jianbo Yao

BackgroundOocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. The objectives of this study were to characterize the expression of a novel oocyte-specific gene encoding an F-box protein during ovarian development in rainbow trout, and identify its potential interacting partners in rainbow trout oocytes.MethodsThrough analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, a novel transcript represented by ESTs only from the oocyte library was identified. The complete cDNA sequence for the novel gene (named fbxoo) was obtained by assembling sequences from an EST clone and a 5′RACE product. The expression and localization of fbxoo mRNA and protein in ovaries of different developmental stages were analyzed by quantitative real time PCR, immunoblotting, in situ hybridization and immunohistochemistry. Identification of Fbxoo binding proteins was performed by yeast two-hybrid screening.Resultsfbxoo mRNA is specifically expressed in mature oocytes as revealed by tissue distribution analysis. The fbxoo cDNA sequence is 1,996 bp in length containing an open reading frame, which encodes a predicted protein of 514 amino acids. The novel protein sequence does not match any known protein sequences in the NCBI database. However, a search of the Pfam protein database revealed that the protein contains an F-box motif at the N-terminus, indicating that Fbxoo is a new member of the F-box protein family. The expression of fbxoo mRNA and protein is high in ovaries at early pre-vitellogenesis stage, and both fbxoo mRNA and protein are predominantly expressed in early pre-vitellogenic oocytes. Several proteins including tissue inhibitor of metalloproteinase 2 (Timp2) were identified as potential Fbxoo protein binding partners.ConclusionsResults suggest that the novel oocyte-specific F-box protein may play an important role in early oocyte development by regulating other critical proteins involved in oogenesis in rainbow trout.


PLOS ONE | 2013

Develop to Term Rat Oocytes Injected with Heat-Dried Sperm Heads

Kyung-Bon Lee; Kieun Park; In-Kiu Kwon; Swamy K. Tripurani; Keun Jung Kim; Ji Hye Lee; Koji Niwa; Min Kyu Kim

This study investigated the development of rat oocytes in vitro and in vivo following intracytoplasmic injection of heads from spermatozoa heat-dried at 50°C for 8 h and stored at 4°C in different gas phases. Sperm membrane and chromosome are damaged by the process of heat-drying. Oocyte activation and cleavage of oocytes were worse in oocytes injected with spermatozoa heat-dried and stored for 1 week than unheated, fresh spermatozoa, but in heat-dried spermatozoa, there were no differences in these abilities of oocytes between the samples stored in nitrogen gas and in air. The oocytes injected with heat-dried spermatozoa stored for 1 week could develop to the morula and blastocyst stages without difference between the samples stored in nitrogen gas and in air after artificial stimulation. Cleavage of oocytes and development of cleaved embryos were higher when heat-dried spermatozoa were stored for 3 and 6 months in nitrogen gas than in air. However, the ability of injected oocytes to develop to the morula and blastocyst stages was not inhibited even when heat-dried spermatozoa stored in both atmosphere conditions for as long as 6 months were used. When 2-cell embryos derived from oocytes injected with heads from spermatozoa heat-dried and stored for 1 week and 1 month were transferred, each 1 of 4 recipients was conceived, and the conceived recipients delivered 1 live young each. These results demonstrate that rat oocytes can be fertilized with heat-dried spermatozoa and that the fertilized oocytes can develop to term.


BMC Developmental Biology | 2011

MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis

Swamy K. Tripurani; Kyung Bon Lee; Gabbine Wee; George W. Smith; Jianbo Yao


Reproductive Biology and Endocrinology | 2011

Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a

Brandon M. Lingenfelter; Swamy K. Tripurani; Jyothsna Tejomurtula; George W. Smith; Jianbo Yao


Reproduction, Fertility and Development | 2011

6 CLONING AND EXPRESSION OF BOVINE FACTOR IN THE GERMLINE ALPHA (FIGLA) IN OOCYTES AND EARLY EMBRYOS: A POTENTIAL TARGET OF microRNA-212

Swamy K. Tripurani; Kyung Bon Lee; George W. Smith; Jianbo Yao

Collaboration


Dive into the Swamy K. Tripurani's collaboration.

Top Co-Authors

Avatar

Jianbo Yao

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

George W. Smith

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Kyung Bon Lee

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Caird E. Rexroad

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Warapond Wanna

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Kyung-Bon Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Caide Xiao

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge