Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swapan Mallick is active.

Publication


Featured researches published by Swapan Mallick.


Nature | 2010

Genetic history of an archaic hominin group from Denisova Cave in Siberia

David Reich; Richard E. Green; Martin Kircher; Johannes Krause; Nick Patterson; Eric Durand; Bence Viola; Adrian W. Briggs; Udo Stenzel; Philip L. F. Johnson; Tomislav Maricic; Jeffrey M. Good; Tomas Marques-Bonet; Can Alkan; Qiaomei Fu; Swapan Mallick; Heng Li; Matthias Meyer; Evan E. Eichler; Mark Stoneking; Michael P. Richards; Sahra Talamo; Michael V. Shunkov; Anatoli P. Derevianko; Jean-Jacques Hublin; Janet Kelso; Montgomery Slatkin; Svante Pääbo

Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.


Science | 2012

A High-Coverage Genome Sequence from an Archaic Denisovan Individual

Matthias Meyer; Martin Kircher; Marie Theres Gansauge; Heng Li; Fernando Racimo; Swapan Mallick; Joshua G. Schraiber; Flora Jay; Kay Prüfer; Cesare de Filippo; Peter H. Sudmant; Can Alkan; Qiaomei Fu; Ron Do; Nadin Rohland; Arti Tandon; Michael Siebauer; Richard E. Green; Katarzyna Bryc; Adrian W. Briggs; Udo Stenzel; Jesse Dabney; Jay Shendure; Jacob O. Kitzman; Michael F. Hammer; Michael V. Shunkov; Anatoli P. Derevianko; Nick Patterson; Aida M. Andrés; Evan E. Eichler

Ancient Genomics The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222, published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage. A close-up look provides clues to the relationships between modern humans, Denisovans, and Neandertals. We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.


Nature | 2014

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer; Fernando Racimo; Nick Patterson; Flora Jay; Sriram Sankararaman; Susanna Sawyer; Anja Heinze; Gabriel Renaud; Peter H. Sudmant; Cesare de Filippo; Heng Li; Swapan Mallick; Michael Dannemann; Qiaomei Fu; Martin Kircher; Martin Kuhlwilm; Michael Lachmann; Matthias Meyer; Matthias Ongyerth; Michael Siebauer; Christoph Theunert; Arti Tandon; Priya Moorjani; Joseph K. Pickrell; James C. Mullikin; Samuel H. Vohr; Richard E. Green; Ines Hellmann; Philip L. F. Johnson; Hélène Blanché

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Genetics | 2012

Ancient Admixture in Human History

Nick Patterson; Priya Moorjani; Yontao Luo; Swapan Mallick; Nadin Rohland; Yiping Zhan; Teri Genschoreck; Teresa Webster; David Reich

Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean “Iceman.”


Nature | 2015

Massive migration from the steppe was a source for Indo-European languages in Europe

Wolfgang Haak; Iosif Lazaridis; Nick Patterson; Nadin Rohland; Swapan Mallick; Bastien Llamas; Guido Brandt; Eadaoin Harney; Kristin Stewardson; Qiaomei Fu; Alissa Mittnik; Eszter Bánffy; Christos Economou; Michael Francken; Susanne Friederich; Rafael Garrido Pena; Fredrik Hallgren; Valery Khartanovich; Aleksandr Khokhlov; Michael Kunst; Pavel Kuznetsov; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Nicole Nicklisch; Sandra Pichler; Roberto Risch; Manuel Ángel Rojo Guerra; Christina Roth; Anna Szécsényi-Nagy

We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Nature Genetics | 2014

A framework for the interpretation of de novo mutation in human disease

Kaitlin E. Samocha; Elise B. Robinson; Stephan J. Sanders; Christine Stevens; Aniko Sabo; Lauren M. McGrath; Jack A. Kosmicki; Karola Rehnström; Swapan Mallick; Andrew Kirby; Dennis P. Wall; Daniel G. MacArthur; Stacey Gabriel; Mark A. DePristo; Shaun Purcell; Aarno Palotie; Eric Boerwinkle; Joseph D. Buxbaum; Edwin H. Cook; Richard A. Gibbs; Gerard D. Schellenberg; James S. Sutcliffe; Bernie Devlin; Kathryn Roeder; Benjamin M. Neale; Mark J. Daly

Spontaneously arising (de novo) mutations have an important role in medical genetics. For diseases with extensive locus heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de novo mutation. We applied this framework to de novo mutations collected from 1,078 ASD family trios, and, whereas we affirmed a significant role for loss-of-function mutations, we found no excess of de novo loss-of-function mutations in cases with IQ above 100, suggesting that the role of de novo mutations in ASDs might reside in fundamental neurodevelopmental processes. We also used our model to identify ∼1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for de novo loss-of-function mutations identified in ASD cases.


Nature | 2014

The genomic landscape of Neanderthal ancestry in present-day humans

Sriram Sankararaman; Swapan Mallick; Michael Dannemann; Kay Prüfer; Janet Kelso; Svante Pääbo; Nick Patterson; David Reich

Genomic studies have shown that Neanderthals interbred with modern humans, and that non-Africans today are the products of this mixture. The antiquity of Neanderthal gene flow into modern humans means that genomic regions that derive from Neanderthals in any one human today are usually less than a hundred kilobases in size. However, Neanderthal haplotypes are also distinctive enough that several studies have been able to detect Neanderthal ancestry at specific loci. We systematically infer Neanderthal haplotypes in the genomes of 1,004 present-day humans. Regions that harbour a high frequency of Neanderthal alleles are enriched for genes affecting keratin filaments, suggesting that Neanderthal alleles may have helped modern humans to adapt to non-African environments. We identify multiple Neanderthal-derived alleles that confer risk for disease, suggesting that Neanderthal alleles continue to shape human biology. An unexpected finding is that regions with reduced Neanderthal ancestry are enriched in genes, implying selection to remove genetic material derived from Neanderthals. Genes that are more highly expressed in testes than in any other tissue are especially reduced in Neanderthal ancestry, and there is an approximately fivefold reduction of Neanderthal ancestry on the X chromosome, which is known from studies of diverse species to be especially dense in male hybrid sterility genes. These results suggest that part of the explanation for genomic regions of reduced Neanderthal ancestry is Neanderthal alleles that caused decreased fertility in males when moved to a modern human genetic background.


Nature | 2015

Genome-wide patterns of selection in 230 ancient Eurasians

Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Nature | 2016

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

Swapan Mallick; Heng Li; Mark Lipson; Iain Mathieson; Melissa Gymrek; Fernando Racimo; Mengyao Zhao; Niru Chennagiri; Arti Tandon; Pontus Skoglund; Iosif Lazaridis; Sriram Sankararaman; Qiaomei Fu; Nadin Rohland; Gabriel Renaud; Yaniv Erlich; Thomas Willems; Carla Gallo; Jeffrey P. Spence; Yun S. Song; Giovanni Poletti; Francois Balloux; George van Driem; Peter de Knijff; Irene Gallego Romero; Aashish R. Jha; Doron M. Behar; Claudio M. Bravi; Cristian Capelli; Tor Hervig

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Nature | 2015

An early modern human from Romania with a recent Neanderthal ancestor

Qiaomei Fu; Mateja Hajdinjak; Oana Teodora Moldovan; Silviu Constantin; Swapan Mallick; Pontus Skoglund; Nick Patterson; Nadin Rohland; Iosif Lazaridis; Birgit Nickel; Bence Viola; Kay Prüfer; Matthias Meyer; Janet Kelso; David Reich; Svante Pääbo

Neanderthals are thought to have disappeared in Europe approximately 39,000–41,000 years ago but they have contributed 1–3% of the DNA of present-day people in Eurasia. Here we analyse DNA from a 37,000–42,000-year-old modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6–9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.

Collaboration


Dive into the Swapan Mallick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiaomei Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge