Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swapnil Mahajan is active.

Publication


Featured researches published by Swapnil Mahajan.


Archives of Biochemistry and Biophysics | 2015

On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins.

Swapnil Mahajan; Yves-Henri Sanejouand

Normal mode analysis is a computational technique that allows to study the dynamics of biological macromolecules. It was first applied to small protein cases, more than thirty years ago. The interest in this technique then raised when it was realized that it can provide insights about the large-scale conformational changes a protein can experience, for instance upon ligand binding. As it was also realized that studying highly simplified protein models can provide similar insights, meaning that this kind of analysis can be both quick and simple to handle, several applications were proposed, in the context of various structural biology techniques. This review focuses on these applications, as well as on how the functional relevance of the lowest-frequency modes of proteins was established.


BMC Structural Biology | 2012

Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins

Lakshmipuram S. Swapna; Swapnil Mahajan; Alexandre G. de Brevern; Narayanaswamy Srinivasan

BackgroundMost signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question “What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?”ResultsA database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex.Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors.ConclusionsThe enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.


Protein Science | 2015

Use of a structural alphabet to find compatible folds for amino acid sequences

Swapnil Mahajan; Alexandre G. de Brevern; Yves-Henri Sanejouand; Narayanaswamy Srinivasan; Bernard Offmann

The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa.


PLOS ONE | 2011

Identification of Local Conformational Similarity in Structurally Variable Regions of Homologous Proteins Using Protein Blocks

Garima Agarwal; Swapnil Mahajan; Narayanaswamy Srinivasan; Alexandre G. de Brevern

Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the “structurally variable” regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of ‘variable’ regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.


Journal of Biomolecular Structure & Dynamics | 2014

Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure

Swapnil Mahajan; Alexandre G. de Brevern; Bernard Offmann; Narayanaswamy Srinivasan

Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a–p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.


Clinical Genetics | 2016

Structure - Function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes.

K Balamurugan; Lise Bjørkhaug; Swapnil Mahajan; S Kanthimathi; Pål R. Njølstad; Narayanaswamy Srinivasan; Mohan; Radha

Maturity‐onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of diabetes characterized by onset of diabetes below 25 years of age, autosomal dominant mode of inheritance and primary defect in insulin secretion. Mutations in the gene (HNF1A) encoding transcription factor hepatocyte nuclear factor 1A (HNF‐1A) results in one of the most common forms of MODY (MODY3). HNF‐1A is mainly enriched in pancreatic β‐cells and hepatocytes and important for organ development and normal pancreatic function. We here report on the functional interrogation of eight missense HNF1A mutations associated with MODY3 in South Indian subjects, and the contributing effect of common variant (S487N) within HNF1A. Of the eight mutations, three mutations (p.R171G, p.G245R and p.R263H), in particular, affected HNF‐1A function in transfected HeLa cells by reducing both transcriptional activity and nuclear localization, possibly due to disruption of the integrity of the three dimensional structure. The common variant p.S487N contributed further to the loss‐of‐function of p.R271Q (p.R271Q+p.S487N double mutant), in vitro, on both activity and localization. Our data on the first functional study of HNF1A mutations in South India subjects confers that the defect of the HNF‐1A mutant proteins are responsible for MODY3 diabetes in these patients.


Database | 2013

DoSA: Database of Structural Alignments

Swapnil Mahajan; Garima Agarwal; Mohammed Iftekhar; Bernard O. Offmann; Alexandre G. de Brevern; Narayanaswamy Srinivasan

Protein structure alignment is a crucial step in protein structure–function analysis. Despite the advances in protein structure alignment algorithms, some of the local conformationally similar regions are mislabeled as structurally variable regions (SVRs). These regions are not well superimposed because of differences in their spatial orientations. The Database of Structural Alignments (DoSA) addresses this gap in identification of local structural similarities obscured in global protein structural alignments by realigning SVRs using an algorithm based on protein blocks. A set of protein blocks is a structural alphabet that abstracts protein structures into 16 unique local structural motifs. DoSA provides unique information about 159 780 conformationally similar and 56 140 conformationally dissimilar SVRs in 74 705 pairwise structural alignments of homologous proteins. The information provided on conformationally similar and dissimilar SVRs can be helpful to model loop regions. It is also conceivable that conformationally similar SVRs with conserved residues could potentially contribute toward functional integrity of homologues, and hence identifying such SVRs could be helpful in understanding the structural basis of protein function. Database URL: http://bo-protscience.fr/dosa/


PLOS ONE | 2017

Knowledge-based prediction of protein backbone conformation using a structural alphabet

Iyanar Vetrivel; Swapnil Mahajan; Manoj Tyagi; Lionel Hoffmann; Yves-Henri Sanejouand; Narayanaswamy Srinivasan; Alexandre G. de Brevern; Frédéric Cadet; Bernard Offmann

Libraries of structural prototypes that abstract protein local structures are known as structural alphabets and have proven to be very useful in various aspects of protein structure analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-residues long structural prototypes. This form of analyzing proteins involves drafting its structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed towards this aim. It involves (i) organizing the structural knowledge in the form of a database of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a knowledge-based algorithm that does not rely on any secondary structure predictions and/or sequence alignment profiles, to scan this database and predict most probable backbone conformations for the protein local structures. Though PB-kPRED uses the structural information from homologues in preference, if available. The predictions were evaluated rigorously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at 30% sequence identity cut-off. We have shown that the kPRED method was able to achieve mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues. The impact of the different strategies for scanning the database on the prediction was evaluated and is discussed. Our results highlight the usefulness of the method in the context of proteins without any known structural homologues. A scoring function that gives a good estimate of the accuracy of prediction was further developed. This score estimates very well the accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for non-commercial usage at http://www.bo-protscience.fr/kpred/.


Journal of Computational Chemistry | 2017

Jumping between protein conformers using normal modes

Swapnil Mahajan; Yves-Henri Sanejouand

The relationship between the normal modes of a protein and its functional conformational change has been studied for decades. However, using this relationship in a predictive context remains a challenge. In this work, we demonstrate that, starting from a given protein conformer, it is possible to generate in a single step model conformers that are less than 1 Å (Cα‐RMSD) from the conformer which is the known endpoint of the conformational change, particularly when the conformational change is collective in nature. Such accurate model conformers can be generated by following either the so‐called robust or the 50 lowest‐frequency modes obtained with various Elastic Network Models (ENMs). Interestingly, the quality of many of these models compares well with actual crystal structures, as assessed by the ROSETTA scoring function and PROCHECK. The most accurate and best quality conformers obtained in the present study were generated by using the 50 lowest‐frequency modes of an all‐atom ENM. However, with less than ten robust modes, which are identified without any prior knowledge of the nature of the conformational change, nearly 90% of the motion described by the 50 lowest‐frequency modes of a protein can be captured. Such results strongly suggest that exploring the robust modes of ENMs may prove efficient for sampling the functionally relevant conformational repertoire of many proteins.


International Journal of Knowledge Discovery in Bioinformatics | 2011

Influence of Genomic and Other Biological Data Sets in the Understanding of Protein Structures, Functions and Interactions

Narayanaswamy Srinivasan; Garima Agarwal; Ramachandra M. Bhaskara; Rupali A. Gadkari; Oruganty Krishnadev; B. Lakshmi; Swapnil Mahajan; Smita Mohanty; Richa Mudgal; Ramaswamy Rakshambikai; Sankaran Sandhya; Govindarajan Sudha; Lakshmipuram S. Swapna; Nidhi Tyagi

In the post-genomic era, biological databases are growing at a tremendous rate. Despite rapid accumulation of biological information, functions and other biological properties of many putative gene products of various organisms remain either unknown or obscure. This paper examines how strategic integration of large biological databases and combinations of various biological information helps address some of the fundamental questions on protein structure, function and interactions. New developments in function recognition by remote homology detection and strategic use of sequence databases aid recognition of functions of newly discovered proteins. Knowledge of 3-D structures and combined use of sequences and 3-D structures of homologous protein domains expands the ability of remote homology detection enormously. The authors also demonstrate how combined consideration of functions of individual domains of multi-domain proteins helps in recognizing gross biological attributes. This paper also discusses a few cases of combining disparate biological datasets or combination of disparate biological information in obtaining new insights about protein-protein interactions across a host and a pathogen. Finally, the authors discuss how combinations of low resolution structural data, obtained using cryoEM studies, of gigantic multi-component assemblies, and atomic level 3-D structures of the components is effective in inferring finer features in the assembly.

Collaboration


Dive into the Swapnil Mahajan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garima Agarwal

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manoj Tyagi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge