Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swathi Ramakrishnan is active.

Publication


Featured researches published by Swathi Ramakrishnan.


PLOS ONE | 2012

Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

Li Shen; Michael J. Ciesielski; Swathi Ramakrishnan; Kiersten Marie Miles; Leigh Ellis; Paula Sotomayor; Protul Shrikant; Robert A. Fenstermaker; Roberto Pili

Background Immunosuppressive factors such as regulatory T cells (Tregs) limit the efficacy of immunotherapies. Histone deacetylase (HDAC) inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA) model or a survivin-based vaccine therapy (SurVaxM) in a castration resistant prostate cancer (CR Myc-CaP) model. Methods and Results RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg) entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs). In vitro low dose entinostat (0.5 µM) induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat. Conclusions These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.


Cancer immunology research | 2015

Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models

Li Shen; Anette Sundstedt; Michael J. Ciesielski; Kiersten Marie Miles; Mona Celander; Remi Adelaiye; Ashley Orillion; Eric Ciamporcero; Swathi Ramakrishnan; Leigh Ellis; Robert A. Fenstermaker; Scott I. Abrams; Helena Eriksson; Tomas Leanderson; Anders Olsson; Roberto Pili

Shen, Sundstedt, and colleagues show in murine models that tasquinimod enhanced the antitumor effects of SurVaxM tumor vaccine for prostate cancer and of 5T4Fab-SEA tumor-targeted superantigen for melanoma by inhibiting the accumulation and function of tumor-infiltrating suppressive myeloid cells. A major barrier for cancer immunotherapy is the presence of suppressive cell populations in patients with cancer, such as myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), which contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. Tasquinimod is a novel antitumor agent that is currently at an advanced stage of clinical development for treatment of castration-resistant prostate cancer. A target of tasquinimod is the inflammatory protein S100A9, which has been demonstrated to affect the accumulation and function of tumor-suppressive myeloid cells. Here, we report that tasquinimod provided a significant enhancement to the antitumor effects of two different immunotherapeutics in mouse models of cancer: a tumor vaccine (SurVaxM) for prostate cancer and a tumor-targeted superantigen (TTS) for melanoma. In the combination strategies, tasquinimod inhibited distinct MDSC populations and TAMs of the M2-polarized phenotype (CD206+). CD11b+ myeloid cells isolated from tumors of treated mice expressed lower levels of arginase-1 and higher levels of inducible nitric oxide synthase (iNOS), and were less immunosuppressive ex vivo, which translated into a significantly reduced tumor-promoting capacity in vivo when these cells were coinjected with tumor cells. Tumor-specific CD8+ T cells were increased markedly in the circulation and in tumors. Furthermore, T-cell effector functions, including cell-mediated cytotoxicity and IFNγ production, were potentiated. Taken together, these data suggest that pharmacologic targeting of suppressive myeloid cells by tasquinimod induces therapeutic benefit and provide the rationale for clinical testing of tasquinimod in combination with cancer immunotherapies. Cancer Immunol Res; 3(2); 136–48. ©2014 AACR.


Molecular Cancer Therapeutics | 2015

Combination Strategy Targeting VEGF and HGF/c-met in Human Renal Cell Carcinoma Models

Eric Ciamporcero; Kiersten Marie Miles; Remi Adelaiye; Swathi Ramakrishnan; Li Shen; Sheng Yu Ku; Stefania Pizzimenti; Barbara Sennino; Giuseppina Barrera; Roberto Pili

Alternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination. We further tested this drug combination in a human ccRCC patient–derived xenograft, RP-R-01, in both VEGF-targeted therapy-sensitive and -resistant models. To evaluate the resistant phenotype, we established an RP-R-01 sunitinib-resistant model by continuous sunitinib treatment (60 mg/kg, 1×/day) of RP-R-01–bearing mice. Treatment with single-agent crizotinib reduced tumor vascularization but failed to inhibit tumor growth in either model, despite also a significant increase of c-met expression and phosphorylation in the sunitinib-resistant tumors. In contrast, axitinib treatment was effective in inhibiting angiogenesis and tumor growth in both models, with its antitumor effect significantly increased by the combined treatment with crizotinib, independently from c-met expression. Combination treatment also induced prolonged survival and significant tumor growth inhibition in the 786-O human RCC model. Overall, our results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting. Mol Cancer Ther; 14(1); 101–10. ©2014 AACR.


Molecular Cancer Therapeutics | 2015

Sunitinib Dose Escalation Overcomes Transient Resistance in Clear Cell Renal Cell Carcinoma and Is Associated with Epigenetic Modifications

Remi Adelaiye; Eric Ciamporcero; Kiersten Marie Miles; Paula Sotomayor; Jonathan Bard; Maria Tsompana; Dylan Conroy; Li Shen; Swathi Ramakrishnan; Sheng-Yu Ku; Ashley Orillion; Joshua Prey; Gerald J. Fetterly; Michael J. Buck; Sreenivasulu Chintala; Georg A. Bjarnason; Roberto Pili

Sunitinib is considered a first-line therapeutic option for patients with advanced clear cell renal cell carcinoma (ccRCC). Despite sunitinibs clinical efficacy, patients eventually develop drug resistance and disease progression. Herein, we tested the hypothesis whether initial sunitinib resistance may be transient and could be overcome by dose increase. In selected patients initially treated with 50 mg sunitinib and presenting with minimal toxicities, sunitinib dose was escalated to 62.5 mg and/or 75 mg at the time of tumor progression. Mice bearing two different patient-derived ccRCC xenografts (PDX) were treated 5 days per week with a dose-escalation schema (40–60–80 mg/kg sunitinib). Tumor tissues were collected before dose increments for immunohistochemistry analyses and drug levels. Selected intrapatient sunitinib dose escalation was safe and several patients had added progression-free survival. In parallel, our preclinical results showed that PDXs, although initially responsive to sunitinib at 40 mg/kg, eventually developed resistance. When the dose was incrementally increased, again we observed tumor response to sunitinib. A resistant phenotype was associated with transient increase of tumor vasculature despite intratumor sunitinib accumulation at higher dose. In addition, we observed associated changes in the expression of the methyltransferase EZH2 and histone marks at the time of resistance. Furthermore, specific EZH2 inhibition resulted in increased in vitro antitumor effect of sunitinib. Overall, our results suggest that initial sunitinib-induced resistance may be overcome, in part, by increasing the dose, and highlight the potential role of epigenetic changes associated with sunitinib resistance that can represent new targets for therapeutic intervention. Mol Cancer Ther; 14(2); 513–22. ©2014 AACR.


Oncogene | 2016

YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage

Eric Ciamporcero; H. Shen; Swathi Ramakrishnan; S. Yu Ku; Sreenivasulu Chintala; Li Shen; Remi Adelaiye; Kiersten Marie Miles; Chiara Ullio; Stefania Pizzimenti; Martina Daga; Gissou Azabdaftari; Kristopher Attwood; Candace S. Johnson; Jianliang Zhang; Giuseppina Barrera; Roberto Pili

Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knockdown sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC.


PLOS ONE | 2011

Concurrent HDAC and mTORC1 Inhibition Attenuate Androgen Receptor and Hypoxia Signaling Associated with Alterations in MicroRNA Expression

Leigh Ellis; Kristin Lehet; Swathi Ramakrishnan; Remi Adelaiye; Kiersten Marie Miles; Dan Dan Wang; Song Liu; Peter Atadja; Michael A. Carducci; Roberto Pili

Specific inhibitors towards Histone Deacetylases (HDACs) and Mammalian Target of Rapamycin Complex 1 (mTORC1) have been developed and demonstrate potential as treatments for patients with advanced and/or metastatic and castrate resistant prostate cancer (PCa). Further, deregulation of HDAC expression and mTORC1 activity are documented in PCa and provide rational targets to create new therapeutic strategies to treat PCa. Here we report the use of the c-Myc adenocarcinoma cell line from the c-Myc transgenic mouse with prostate cancer to evaluate the in vitro and in vivo anti-tumor activity of the combination of the HDAC inhibitor panobinostat with the mTORC1 inhibitor everolimus. Panobinostat/everolimus combination treatment resulted in significantly greater antitumor activity in mice bearing androgen sensitive Myc-CaP and castrate resistant Myc-CaP tumors compared to single treatments. We identified that panobinostat/everolimus combination resulted in enhanced anti-tumor activity mediated by decreased tumor growth concurrent with augmentation of p21 and p27 expression and the attenuation of angiogenesis and tumor proliferation via androgen receptor, c-Myc and HIF-1α signaling. Also, we observed altered expression of microRNAs associated with these three transcription factors. Overall, our results demonstrate that low dose concurrent panobinostat/everolimus combination therapy is well tolerated and results in greater anti-tumor activity compared to single treatments in tumor bearing immuno-competent mice. Finally, our results suggest that response of selected miRs could be utilized to monitor panobinostat/everolimus in vivo activity.


Oncogene | 2014

Alterations in chromatin accessibility and DNA methylation in clear cell renal cell carcinoma

Michael J. Buck; L M Raaijmakers; Swathi Ramakrishnan; Degeng Wang; Sujith Valiyaparambil; Song Liu; Norma J. Nowak; Roberto Pili

Recent studies have demonstrated that in clear cell renal cell carcinoma (ccRCC) several chromatin remodeling enzymes are genetically inactivated. Although, growing evidence in cancer models has demonstrated the importance of epigenetic changes, currently only changes in DNA methylation can be accurately determined from clinical samples. To address this limitation, we have applied formaldehyde-assisted isolation of regulatory elements (FAIREs) combined with next-generation sequencing (FAIRE-seq) to identify specific changes in chromatin accessibility in clinical samples of ccRCC. We modified the FAIRE procedure to allow us to examine chromatin accessibility for small samples of solid tumors. Our FAIRE results were compared with DNA-methylation analysis and show how chromatin accessibility decreases at many sites where DNA-methylation remains unchanged. In addition, our FAIRE-seq analysis allowed us to identify regulatory elements associated with both normal and tumor tissue. We have identified decreases in chromatin accessibility at key ccRCC-linked genes, including PBRM1, SETD2 and MLL2. Overall, our results demonstrate the power of examining multiple aspects of the epigenome.


Cancer Journal | 2013

Histone deacetylase inhibitors and epigenetic modifications as a novel strategy in renal cell carcinoma.

Swathi Ramakrishnan; Roberto Pili

AbstractRecent investigations of renal cell carcinoma (RCC) have revealed several epigenetic modifications, as well as alterations in the genes and enzymes that regulate these changes. Preclinical models have revealed that histone gene modifiers and epigenetic alterations may play a critical role in RCC tumorigenesis. Specific changes in DNA methylation and mutations of histone modifiers have been identified and may be associated with an aggressive phenotype. In addition, the potential of reversing the effects of these enzymes and hence reversing the cellular epigenetic landscape to a “normal phenotype” have led to an increasing interest in developing targeted chromatin remodeling agents. However, the translation of the understanding of these changes to the clinic for the treatment of RCC has posed significant challenges, partly due to tumor heterogeneity. This review describes the aberrant histone and DNA alterations recently reported in RCC and highlights the potential targeted chromatin remodeling therapies in the management of this disease.


The Prostate | 2012

Development of a Castrate Resistant Transplant Tumor Model of Prostate Cancer

Leigh Ellis; Kristin Lehet; Swathi Ramakrishnan; Remi Adelaiye; Roberto Pili

Currently, limited mouse models that mimic the clinical course of castrate resistant prostate development currently exist. Such mouse models are urgently required to conduct pre‐clinical studies to assist in the understanding of disease progression and the development of rational therapeutic strategies to treat castrate resistant prostate cancer.


Oncotarget | 2016

Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts

Lei Wei; Sreenivasulu Chintala; Eric Ciamporcero; Swathi Ramakrishnan; May Elbanna; Jianmin Wang; Qiang Hu; Sean T. Glenn; Mitsuko Murakami; Lu Liu; Eduardo Cortes Gomez; Yuchen Sun; Jacob Conroy; Kiersten Marie Miles; Kullappan Malathi; Sudha Ramaiah; Anand Anbarasu; Anna Woloszynska-Read; Candace S. Johnson; Jeffrey Conroy; Song Liu; Carl Morrison; Roberto Pili

Purpose Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. Experimental design We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interference. Results We identified a number of somatic mutations, mostly shared by the primary tumors and PDX. In particular, BLCAb001, which is less responsive to cisplatin than BLCAb002, carried non-sense mutations in several genes associated with cisplatin resistance, including MLH1, BRCA2, and CASP8. Furthermore, RNA-Seq analysis revealed the overexpression of cisplatin resistance associated genes such as SLC7A11, TLE4, and IL1A in BLCAb001. Two different PIK3CA mutations, E542K and E545K, were identified in BLCAb001 and BLCAb002, respectively. Thus, we tested whether the genomic profiling was predictive of response to a dual PI3K/mTOR targeting agent, LY3023414. Despite harboring similar PIK3CA mutations, BLCAb001 and BLCAb002 exhibited differential response, both in vitro and in vivo. Sustained target modulation was observed in the sensitive model BLCAb002 but not in BLCAb001, as well as decreased autophagy. Interestingly, computational modelling of mutant structures and affinity binding to PI3K revealed that E542K mutation was associated with weaker drug binding than E545K. Conclusions Our results suggest that the presence of activating PIK3CA mutations may not necessarily predict in vivo treatment response to PI3K targeted therapies, while specific gene alterations may be predictive for cisplatin response in bladder cancer models and, potentially, in patients as well.

Collaboration


Dive into the Swathi Ramakrishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiersten Marie Miles

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Leigh Ellis

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Li Shen

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Remi Adelaiye

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley Orillion

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sheng-Yu Ku

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Paula Sotomayor

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge